

EL METABOLISMO DE LOS HOGARES EN ESPAÑA. UN ANÁLISIS REGIONAL DE LOS FLUJOS FÍSICOS DE LOS MODELOS DE CONSUMO

Diseño de Investigación y Avance de Resultados

Monica Di Donato

Departamento de Economía Aplicada- Universidad de Valladolid

Madrid, 7 de Noviembre de 2016

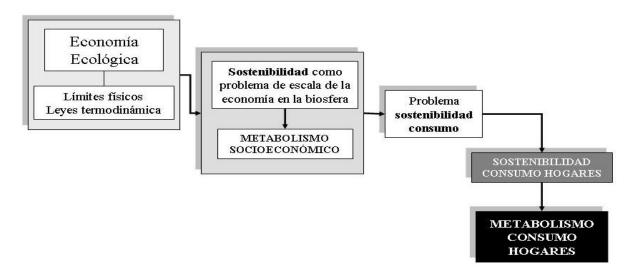
Segundo seminario del proyecto "Cambio social, crisis económica y escasez de recursos, su impacto sobre las áreas urbanas"

ÁREAS URBANAS Y CRISIS ECONÓMICA

CONTENIDO

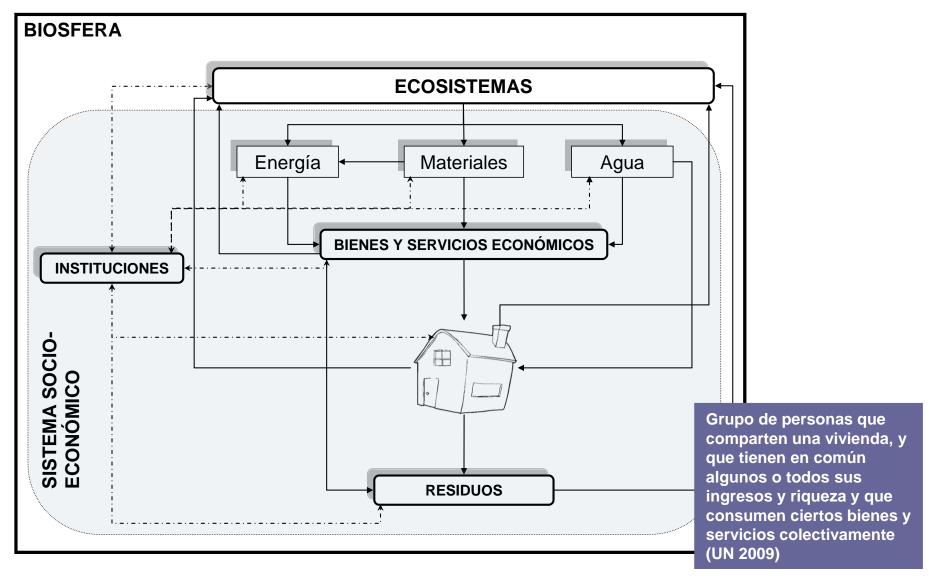
2. AVANCE DE RESULTADOS OBTENIDOS HASTA EL MOMENTO

3. TAREAS EN DESARROLLO


v

1. OBJETIVO DEL TRABAJO Y ENFOQUE

OBJETIVOS PRINCIPALES DE LA INVESTIGACIÓN


- i. Determinar los principales factores que explican el impacto ambiental debido al consumo de los hogares españoles por CCAA (HE)
- ii. Describir y analizar las tendencias que destacan en el consumo de los HE a lo largo del periodo analizado (2006-2012)
- iii. Describir y analizar las intensidades energéticas y materiales y sus cambios a lo largo del tiempo
- iv. Analizar las diferencias en el uso de energía y materiales de los HE de cada CCAA y entre los HE de diferentes CCAA

ENFOQUE

1. METODOLOGÍA: EL METABOLISMO DE LOS HOGARES

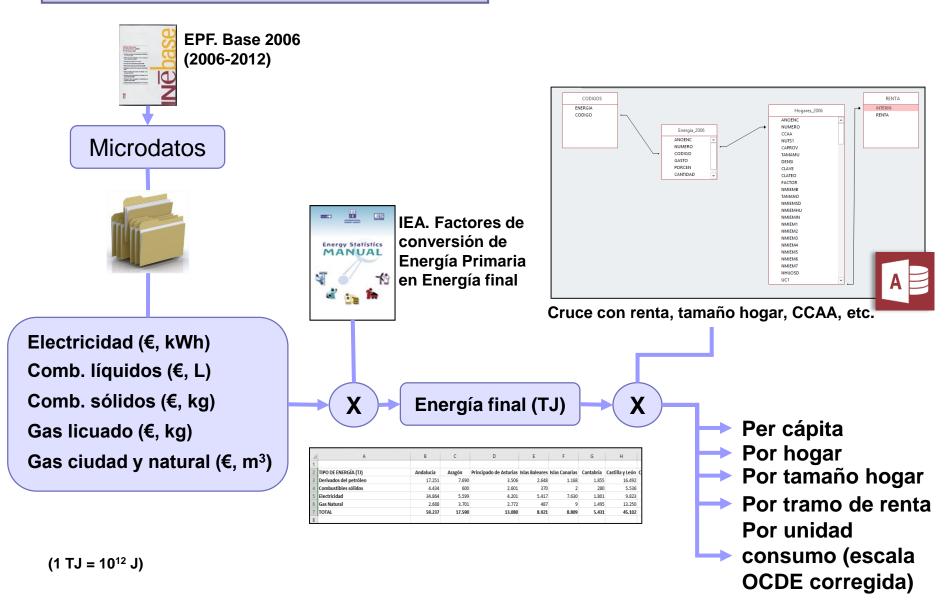
Sistema estudiado

1. LOS HOGARES ESPAÑOLES: METODOLOGÍA DE TRABAJO

Sistema estudiado: flujos de energía y materiales

USOS RESIDENCIALES

MOVILIDAD


PERSPECTIVA ENERGÉTICA

ALIMENTACIÓN

PERSPECTIVA MATERIAL

Usos residenciales: Obtención de datos

Seminario: ÁREAS URBANAS Y CRISIS ECONÓMICA – Madrid 7 de noviembre 2016

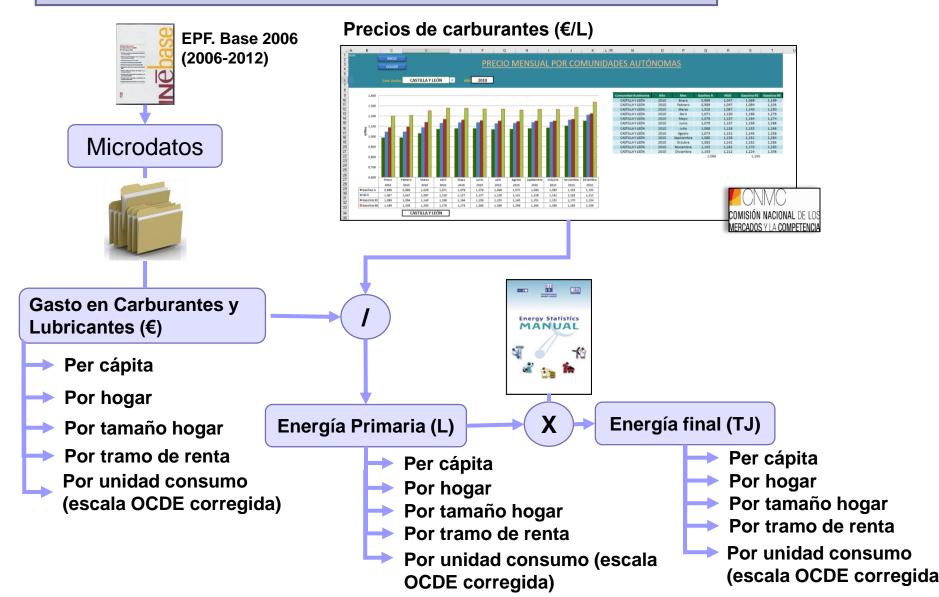
Usos residenciales: Estimación consumo equipamientos

PROBLEMA:

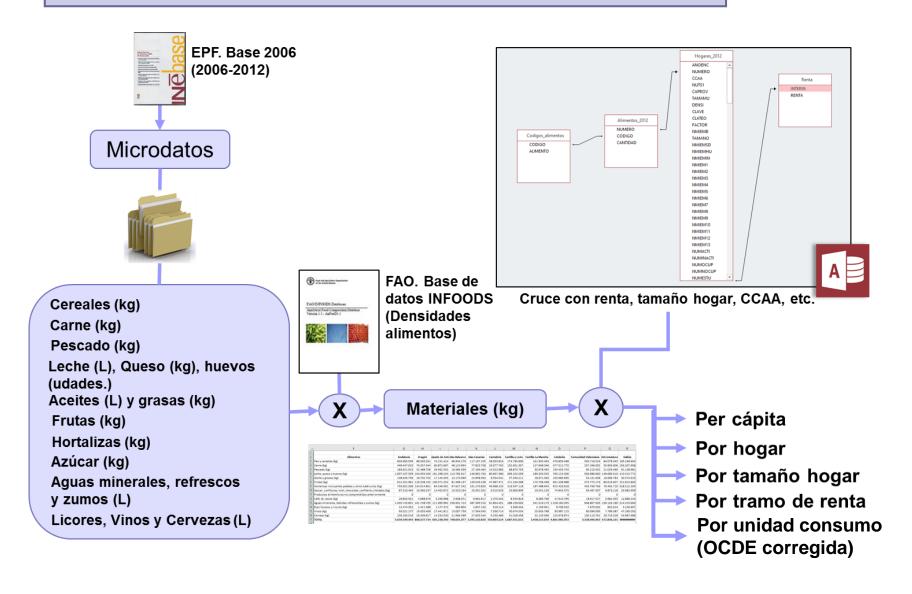
A partir del año 2006 desaparece la información sobre equipamientos de la EPF

Energía final (TJ)

Estudio Análisis del consumo energético sector residencial. IDAE

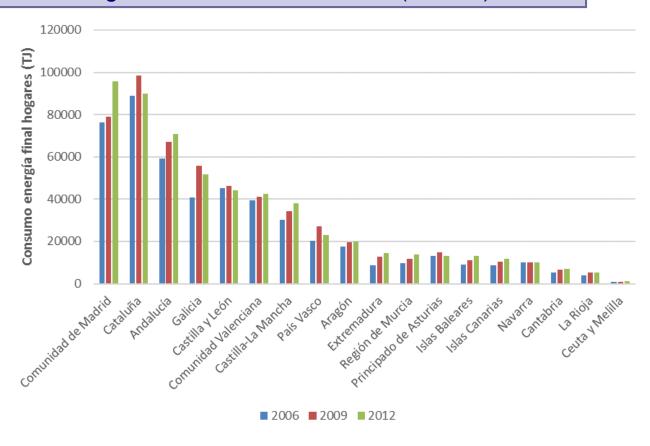

Unidad: ktep	Esp	aña	Zona A	tlántica	Zona Co	ntinental	Zona Med	literránea
Calefacción	6.892	47,0%	722	40,1%	3.472	55,3%	2.698	40,9%
Agua caliente sanitaria	2.776	18,9%	395	21,9%	1.091	17,4%	1.291	19,6%
Cocina	1.090	7,4%	216	12,0%	405	6,5%	469	7,1%
Refrigeración	123	0,8%	2	0,1%	47	0,7%	75	1,1%
Iluminación	606	4,1%	68	3,8%	164	2,6%	374	5,7%
Electrodomésticos	3.188	21,7%	398	22,1%	1.106	17,6%	1.684	25,6%
Frigoríficos	975	6,6%	107	5,9%	341	5,4%	527	8,0%
Congeladores	193	1,3%	39	2,2%	48	0,8%	106	1,6%
Lavadoras	378	2,6%	59	3,3%	119	1,9%	199	3,0%
Lavavajillas	193	1,3%	24	1,4%	70	1,1%	98	1,5%
Secadoras	107	0,7%	10	0,6%	25	0,4%	71	1,1%
Horno	263	1,8%	42	2,3%	97	1,5%	124	1,9%
TV	388	2,6%	29	1,6%	159	2,5%	201	3,0%
Ordenadores	237	1,6%	22	1,2%	84	1,3%	131	2,0%
Stand-by	341	2,3%	46	2,5%	115	1,8%	181	2,7%
Resto Electrodomésticos	112	0,8%	20	1,1%	47	0,8%	45	0,7%
TOTAL	14.676	100%	1.801	100%	6.284	100%	6.591	100%

Estructura consumo equipamientos por zonas climáticas (2010)


⊿	A	В	C	D	E	F	G	H
1	(TJ)	2006	2007	2008	2009	2010	2011	2012
2	Andalucía	59237	63178	65226	67086	72717	71047	70948
3	Aragón	17590	19495	17658	19602	19993	22297	19831
4	Principado de Asturias	13080	13228	13965	14918	15227	13194	13167
5	Islas Baleares	8921	10347	10284	11231	12325	13446	13037
6	Islas Canarias	8809	9678	10170	10498	11980	12048	11649
7	Cantabria	5431	6087	6783	6646	6648	7115	6938
8	Castilla y León	45102	42986	45391	46379	48592	42323	44340
9	Castilla-La Mancha	30314	31689	35167	34280	39493	43895	38116
10	Cataluña	89013	82730	84877	98559	98517	98870	89804
11	Comunidad Valenciana	39476	35903	40488	40983	48732	46344	42542
12	Extremadura	8637	9925	10931	12762	13169	13482	14663
13	Galicia	40890	47586	47927	55669	51973	49842	51550
14	Comunidad de Madrid	76155	76638	74724	79139	84784	83105	95778
15	Región de Murcia	9659	11269	11857	11898	13581	13728	13721
16	Navarra	10193	9150	9999	10027	10186	9017	10087
17	País Vasco	20350	21755	22982	27303	26974	23461	23096
18	La Rioja	3809	4159	4948	5141	4845	5439	5159
19	Ceuta y Melilla	829	846	764	759	832	894	1102
20	España	487495	496650	514139	552881	580569	569546	565529

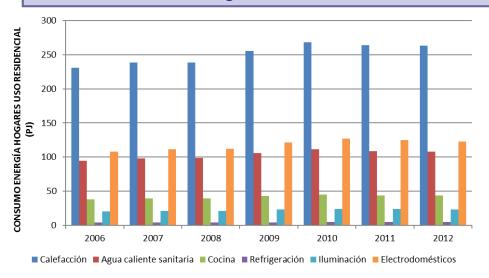
Energía por usos 59.236.516 63.177.542 65.226.246 67.086.118 72.717.250 71.047.270 70.947.824 Agua caliente sanitaria 11.602.017 12.373.904 12.775.161 13.139.434 14.242.343 13.915.262 13.895.785 4.212.319 4.492.566 4.638.250 4.770.506 5.170.937 5.052.184 5.045.112 Refrigeración 671.927 716.631 739.870 760.966 824.841 805.898 15.139.618 16.146.863 16.670.469 17.145.813 18.585.013 18.158.201 18.132.785 4.737.625 5.052.820 5.216.672 5.365.421 5.815.788 5.682.226 5.674.273 957.228 1.020.913 1.054.019 1.084.073 1.175.069 1.148.083 1.146.476 1.787.799 1.906.742 1.968.573 2.024.706 2.194.657 2.144.256 882.951 941.694 972.231 999.954 1.083.889 1.058.997 1.057.514 14 Secadora 642.517 685.264 707.486 727.659 788.738 770.624 1.117.804 1.192.172 1.230.831 1.265.927 1.372.188 1.340.675 1.338.798 1.806.690 1.926.890 1.989.375 2.046.100 2.217.847 2.166.914 2.163.881 1.178.771 1.257.195 1.297.963 1.334.973 1.447.029 1.413.798 1.411.819 18 Modo en espera 1.625.506 1.733.652 1.789.870 1.840.907 1.995.430 1.949.604 1.946.875 402.727 429.521 443.449 456.094 494.378 483.024 482.348

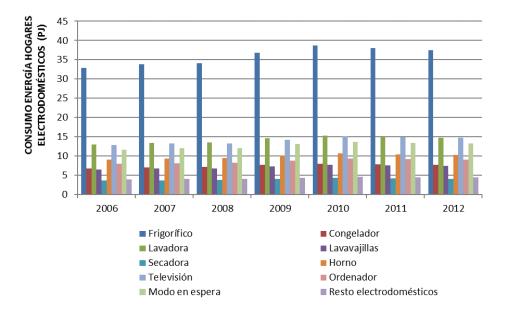
Transporte: Estimación consumo energético movilidad privada



Alimentación: Estimación consumo material

RESULTADOS PROVISIONALES (Perspectiva energética)


Metabolismo energético: Usos Residenciales (Totales)


Aumento generalizado entre 2006 y 2012

Disminución en el período 2010-2012 debido a efecto de la crisis en los hogares

Metabolismo energético: Usos Residenciales (Usos del hogar)

El grueso del consumo (≈ 87 %) se reparte entre la calefacción, los electrodomésticos y el agua caliente sanitaria (ACS)

Los electrodomésticos que suponen un mayor consumo energético son el frigorífico (30 %), la lavadora (12 %), la televisión (12 %) y el modo en espera (11 %) de los aparatos electrónicos

М,

2. PERSPECTIVA ENERGÉTICA

Metabolismo energético: Usos Residenciales (Análisis de Conglomerados)

a) Selección inicial variables

- ☐ Grados-día calefacción (HDD)
- Grados-día de refrigeración (CDD)
- Número de hogares (número, EPF)
- Superficie útil hogares (m², EPF)
- □ Tamaño de los hogares (personas, EPF)
- Renta (total, per cápita, por hogar) (€, EPF)
- □ Consumo energético hogares (total, per cápita, por hogar) (TJ, GJ/cap, GJ/hogar, EPF)

Grados-día calefacción (HDD)

Si Tm $< 15^{\circ}$ C, HDD = (15-Tm)*d

Si Tm $> 15^{\circ}$ C, HDD = 0

Grados-día refrigeración (CDD)

Si Tm $< 21^{\circ}$ C, CDD = 0

Si Tm > 21° C, CDD = $(Tm-21)^{*}$ d

Tm = Temperatura media mensual (AEMET) d = Número días del mes correspondiente a la Tm

b) Normalización y transformación variables

Pruebas de normalidad

	Kolmo	gorov-Smirn	ov ^a	Sh	napiro-Wilk	
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
HDD	,250	17	,006	,694	17	,000
CDD	,221	17	,026	,730	17	,000
Hogares	,265	17	,003	,803	17	,002
Superficie	,116	17	,200	,946	17	,397
Tamano	,100	17	,200	,984	17	,983
Renta	,258	17	,004	,788	17	,001
Renta_cap	,151	17	,200*	,953	17	,512
Renta_hogar	,179	17	,148	,957	17	,574
Consumo_EN	,225	17	,022	,832	17	,006
Consumo_EN_cap	,107	17	,200*	,972	17	,850
Consumo_EN_hogar	,131	17	,200*	,975	17	,905

Raíz cuadrada de Grados-día calefacción (HDDR)
Raíz cuadrada de Grados-día de refrigeración (CDDR)
Raíz cuadrada Número de hogares (número, EPF)
Superficie útil hogares (m², EPF)
Tamaño de los hogares (personas, EPF)
Renta (per cápita) (€, EPF)
Consumo energético hogares (per cápita) (GJ/cap, EPF)

^{*.} Esto es un límite inferior de la significación verdadera.

a. Corrección de significación de Lilliefors

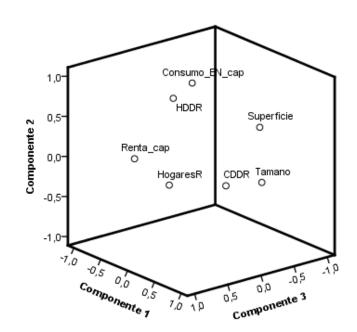
Metabolismo energético: Usos Residenciales (Análisis de Conglomerados)

c) Análisis de componentes principales

Varianza total explicada

		Autovalores inici	ales	Sumas de extracción de cargas al cuadrado			
Componente	Total	% de varianza	% acumulado	Total	% de varianza	% acumulado	
1	2,810	40,144	40,144	2,810	40,144	40,144	
2	1,706	24,370	64,514	1,706	24,370	61,514	
3	1,348	19,256	83,770	1,348	19,256	83,770	
4	,488	6,976	90,746				
5	,360	5,136	95,882				
6	,174	2,480	98,362				
7	,115	1,638	100,000				

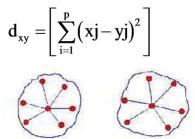
83,8 % de la varianza explicada por 3 componentes

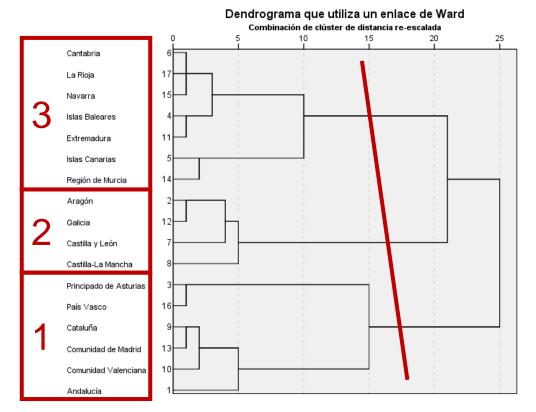

Método de extracción: análisis de componentes principales.

Matriz de coeficiente de puntuación de componente

	(Componente	
	1	2	3
Superficie	,207	,289	-,304
Tamano	,301	-,046	-,169
Renta_cap	-,287	-,069	,261
Consumo_EN_cap	-,131	,490	-,119
HDDR	-,015	,506	,289
CDDR	,312	,011	,252
HogaresR	,158	,012	,625

Método de extracción: análisis de componentes principales.


Puntuaciones de componente.

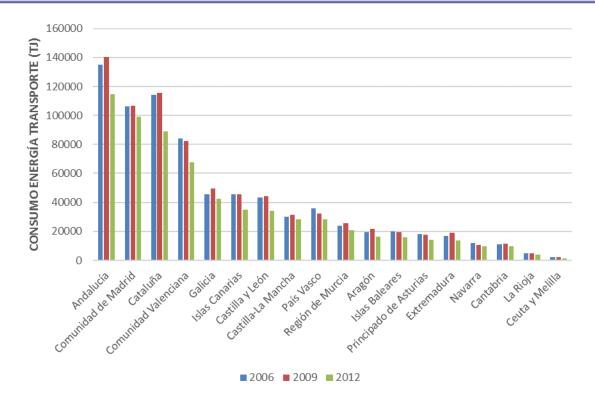


Metabolismo energético: Usos Residenciales (Análisis de Conglomerados)

d) Análisis de conglomerados jerárquicos

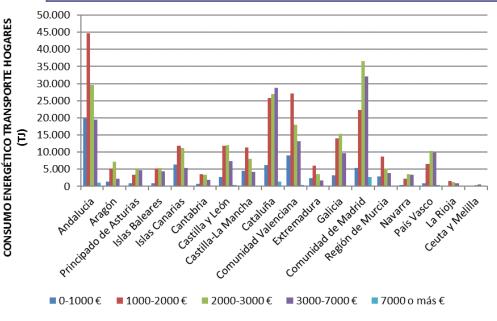
Medida de asociación: Distancia euclidiana al cuadrado Método de asociación jerárquico: Método de Ward Variables: Puntuaciones ACP para los tres componentes

Caso	3 clústeres
1:Andalucía	1
2:Aragón	2
3:Principado de Asturias	1
4:Islas Baleares	3
5:Islas Canarias	3
6:Cantabria	3
7:Castilla y León	2
8:Castilla-La Mancha	2
9:Cataluña	1
10:Comunidad Valenciana	1
11:Extremadura	3
12:Galicia	2
13:Comunidad de Madrid	1
14:Región de Murcia	3
15:Navarra	3
16:País Vasco	1
17:La Rioja	3


Metabolismo energético: Usos Residenciales (Análisis de Conglomerados)

e) Análisis de conglomerados jerárquicos: Características conglomerados

Ward I	Method	HDD	CDD	Hogares	Superficie	Tamano	Renta	Renta_cap	Consumo_E N	Consumo_E N_cap
1	Media	2294,98	1432,15	1974842,87	96,438	2,542	4,54E+10	9274,113	55889,16	11,007
	N	6	6	6	6	6	6	6	6	6
	Desviación estándar	1335,269	1848,519	1089435,409	7,6844	,1328	2,425E+10	1473,2745	34776,015	2,4712
	Mínimo	1070	0	457235	87,7	2,3	10954009137	7069,7	13167	8,3
	Máximo	3930	4895	3100291	107,5	2,7	70455162874	10903,3	95778	14,7
	% de suma total	29,1%	54,6%	65,7%	33,3%	34,8%	68,0%	38,4%	59,4%	30,3%
2	Media	6970,20	827,55	851994,81	108,040	2,563	1,77E+10	8061,219	38459,37	17,152
	N	4	4	4	4	4	4	4	4	4
	Desviación estándar	4974,114	866,663	244577,218	8,4365	,1175	5510389613	766,2836	13578,065	1,7000
	Mínimo	3597	56	535987	98,0	2,4	11480195890	6941,6	19831	14,7
	Máximo	14167	1991	1061706	118,4	2,7	22794886205	8600,9	51550	18,5
	% de suma total	58,9%	21,0%	18,9%	24,9%	23,4%	17,7%	22,3%	27,3%	31,5%
3	Media	811,29	546,76	397683,54	103,654	2,611	8189330729	8135,454	10750,64	11,851
	N	7	7	7	7	7	7	7	7	7
	Desviación estándar	593,637	471,220	221264,437	8,8010	,1257	4106147458	1193,5731	3568,456	3,6510
	Mínimo	0	6	129347	88,1	2,5	2800821408	6588,5	5159	5,5
	Máximo	1675	1253	793958	117,1	2,9	15147016323	9592,1	14663	15,9
	% de suma total	12,0%	24,3%	15,4%	41,8%	41,7%	14,3%	39,3%	13,3%	38,1%


Valores más altos Valores más bajos

Metabolismo energético: Transporte (Totales)

Aumento generalizado entre 2006-2010 (media España = 1,54 %)
Fuerte disminución entre 2010 y 2012 acusando efectos de la crisis (media España = - 17,4 %)

Metabolismo energético: Transporte (Por tramos de renta)

Clasificación de los hogares regionales para los cuales un determinado tramo de renta supone un mayor consumo de energía (2012)

0-1000 €	1000-2000 €	2000-3000 €	3000-7000 €	7000 o más €
I. Canarias (18,3 %)	Extremadura (44,2 %)	Aragón (44,5 %)	Ceuta y Melilla (44,9 %)	C. Madrid (2,7 %)
Extremadura (17,9 %)	R. Murcia (41,5 %)	Navarra (37,2 %)	Navarra (35,1 %)	P. Vasco (1,6 %)
Andalucía (17,2 %)	C. Valenciana (40 %)	P. Vasco (37 %)	P. Vasco (34,9 %)	Cataluña (1,6 %)
Castilla-La Mancha (16,2 %)	Castilla- La Mancha (40 %)	C. Madrid (36,9 %)	P. Asturias (33,9 5)	I. Baleares (1,4 %)

0-1000 €	1000-2000 €	2000-3000 €	3000-7000 €	7000 o más €
I. Canarias (22,4)	I. Canarias (45)	I. Canarias (62,3)	I. Canarias (83,5)	Castilla y León (162,1)
Andalucía (17,9)	R. Murcia (39,7)	Galicia (61,4)	Galicia (78,7)	R. Murcia (153,4)
R. Murcia (19)	Cantabria (37,6)	R. Murcia (59,5)	Navarra (76)	Castilla-La Mancha (145,5)
Castilla-La Mancha (17)	Extremadura (37,2)	Castilla-La Mancha (58)	R. Murcia (67,6)	La Rioja (126,2)

Clasificación de los hogares regionales para los cuales la intensidad del consumo por hogar (GJ/hogar) es mayor, según tramos de renta (2012)

Metabolismo energético: Transporte (Descomposición Factorial)

Descomposición en factores de Kaya (Kaya and Yokobori, 1997)

$$C_i = \sum_i P_i * D_i * E_i$$

C_i = Consumo energético de los turismos por CCAA (TJ)

P_i = Parque de turismos por CCAA (número de turismos)

D_i = Distancia recorrida por turismos por CCAA (km recorridos/turismo)

E_i = Eficiencia del consumo del turismo por CCAA (TJ/km recorrido)

$$\Delta C = C^T - C^0 = P_{ef} + D_{ef} + E_{ef}$$

P_{ef} = Efecto estructural (variación en el parque de turismos)

D_{ef} = Efecto de la actividad (cambios en las distancias recorrida por los vehículos)

E_{ef} = Efecto de la tecnología (cambios en el consumo de combustible)

A partir de Mendiluce y Del Río (2010)

Metabolismo energético: Transporte (Descomposición Factorial)

Ejemplo: Castilla y León

	2006/2007	2007/2008	2008/2009	2009/2010	2010/2011	2011/2012	2006/2012
Pef	1915	918	459	422	221	5	3598
Def	845	-829	1284	-2013	-1756	-1377	-3972
Eef	-4378	1106	-613	-3634	392	-2266	-8924
Ct-C0	-1618	1195	1130	-5225	-1143	-3637	-9298

	2006/2007	2007/2008	2008/2009	2009/2010	2010/2011	2011/2012	2006/2012
Pef	4,40%	2,19%	1,07%	0,95%	0,57%	0,01%	8,27%
Def	1,94%	-1,98%	2,98%	-4,55%	-4,50%	-3,64%	-9,13%
Eef	-10,06%	2,64%	-1,42%	-8,22%	1,00%	-5,99%	-20,51%
Ct-C0	-3,72%	2,85%	2,62%	-11,81%	-2,93%	-9,61%	-21,36%

٠,

2. PERSPECTIVA ENERGÉTICA

Metabolismo energético: Transporte (Análisis de Conglomerados)

a) Selección inicial variables

- Número de vehículos (total, per cápita, por hogar, DGT)
- ☐ Congestión de tráfico (vehículos/km carretera, DGT)
- Dieselización (Turismos gasóleo/Turismos gasolina, DGT)
- □ Consumo por vehículo (TJ/vehículo, EPF, DGT)
- Eficiencia (TJ/km recorrido, EPF y Ministerio de Fomento)
- □ Distancia recorrida (total, per cápita, por hogar) (km recorridos por turismos en toda la red de carreteras, Ministerio de Fomento)
- Renta (total, per cápita, por hogar) (€, EPF)
- □ Consumo energético transporte hogares (total, per cápita, por hogar) (TJ, GJ/cap, GJ/hogar, EPF, CNMC)

b) Normalización y transformación variables

Pruebas de normalidad

	Kolmo	gorov-Smirn	ov ^a	Shapiro-Wilk			
	Estadístico	gl	Sig.	Estadístico	gl	Sig.	
Vehiculos	,250	17	,006	,811	17	,003	
Veh_cap	,173	17	,189	,915	17	,121	
Veh_hogar	,110	17	,200*	,958	17	,589	
Veh_km	,254	17	,005	,629	17	,000	
Dieselizacion	,207	17	,051	,858	17	,014	
Cons_veh	,135	17	,200	,974	17	,889	
Eficiencia	,113	17	,200*	,922	17	,158	
Distancia	,183	17	,134	,892	17	,051	
Distancia_cap	,180	17	,145	,939	17	,303	
Distancia_veh	,122	17	,200	,981	17	,965	
Renta	,258	17	,004	,788	17	,001	
Renta_cap	,151	17	,200	,953	17	,512	
Renta_hogar	,179	17	,148	,957	17	,574	
Consumo_EN	,239	17	,011	,820	17	,004	
Consumo_EN_cap	,152	17	,200	,955	17	,541	
Consumo_EN_hogar	,127	17	,200*	,922	17	,160	

- ☐ Raíz cuadrada número de vehículos (total, DGT)
- □ Raíz cuadrada de los vehículos/km carretera (DGT)
- ☐ Dieselización al cuadrado (Turismos gasóleo/Turismos gasolina, DGT)
- ☐ Consumo por vehículo (TJ/vehículo, EPF, DGT)
- ☐ Eficiencia (TJ/km recorrido, EPF y Ministerio de Fomento)
- ☐ Distancia recorrida por vehículo (km recorridos por turismo, Ministerio de Fomento)
- □ Raíz cuadrada de la Renta (total) (€, EPF)
- □ Raíz cuadrada del consumo energético transporte hogares (total) (TJ, EPF, CNMC)

^{*.} Esto es un límite inferior de la significación verdadera.

a. Corrección de significación de Lilliefors

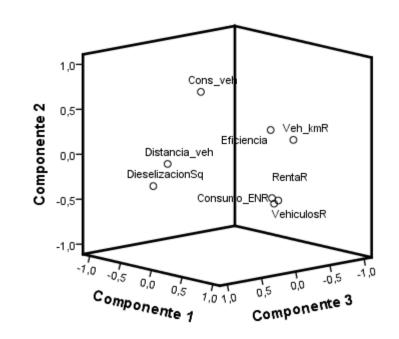
Metabolismo energético: Trasporte (Análisis de Conglomerados)

c) Análisis de componentes principales

Varianza total explicada

		Autovalores inici	ales	Sumas de extracción de cargas al cuadrado			
Componente	Total	% de varianza	% acumulado	Total	% de varianza	% acumulado	
1	4,705	58,808	58,808	4,705	58,808	58,808	
2	1,354	16,930	75,738	1,354	16,930	75,738	
3	1,055	13,183	88,921	1,055	13,183	88,921	
4	,635	7,936	96,857				
5	,216	2,704	99,561				
6	,021	,265	99,826				
7	,014	,171	99,997				
8	,000	,003	100,000				

88,9 % de la varianza explicada por 3 componentes

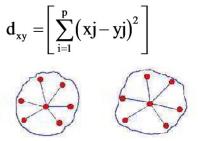

Método de extracción: análisis de componentes principales.

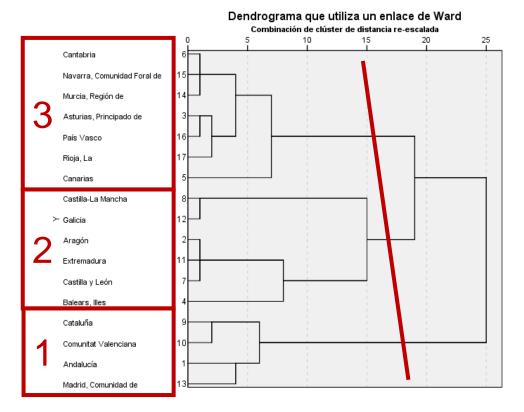
Matriz de coeficiente de puntuación de componente

	Componente						
	1	2	3				
VehiculosR	,191	-,275	,117				
Veh_kmR	,177	,206	-,205				
DieselizacionSq	-,055	-,190	,804				
RentaR	,194	-,251	,075				
Consumo_ENR	,193	-,224	,157				
Cons_veh	,017	,583	,434				
Eficiencia	,183	,328	,134				
Distancia_veh	-,181	-,155	,100				

Método de extracción: análisis de componentes principales.

Puntuaciones de componente.


М,


2. PERSPECTIVA ENERGÉTICA

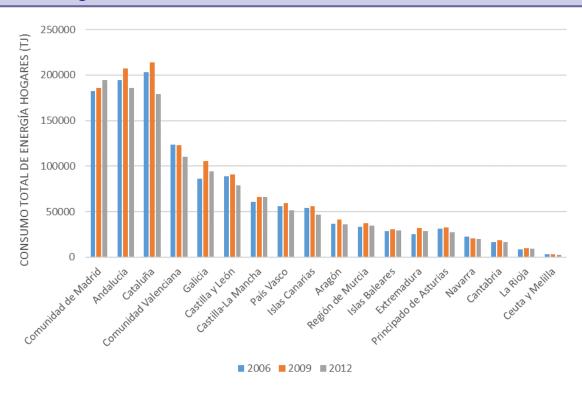
Metabolismo energético: Transporte (Análisis de Conglomerados)

c) Análisis de conglomerados jerárquicos

Medida de asociación: Distancia euclidiana al cuadrado Método de asociación jerárquico: Método de Ward Variables: Puntuaciones ACP para los tres componentes

Caso	3 clústeres
1:Andalucía	1
2:Aragón	2
3:Asturias, Principado de	3
4:Balears, Illes	2
5:Canarias	3
6:Cantabria	3
7:Castilla y León	2
8:Castilla-La Mancha	2
9:Cataluña	1
10:Comunitat Valenciana	1
11:Extremadura	2
12:Galicia	2
13:Madrid, Comunidad de	1
14:Murcia, Región de	3
15:Navarra, Comunidad Foral de	3
16:País Vasco	3
17:Rioja, La	3

Metabolismo energético: Transporte (Análisis de Conglomerados)


d) Análisis de conglomerados jerárquicos: Características conglomerados

Ward Method		Vehiculos	Veh_km	Dieselizacion	Cons_veh	Eficiencia Distancia		Distancia_ve h	Renta	Consumo_E N
1	Media	3200039,00	426,2139	1,1918	,02887	,0000038591	2,45E+10	7645,3223	5,94E+10	92625,20
	N	4	4	4	4	4	4	4	4	4
	Desviación estándar	584021,157	376,30684	,19992	,001791	,0000007921	5949431743	1093,79147	1,305E+10	19636,468
	Mínimo	2382582	159,66	,95	,027	,00000314	18943872300	6032,20	40961280547	67743
	Máximo	3766805	984,16	1,41	,030	,00000499	30736273300	8438,34	70455162874	114637
% de suma total		57,7%	51,5%	22,5%	23,3%	30,2%	49,0%	17,8%	59,3%	57,6%
2	Media	915610,67	97,5356	1,2993	,02711	,0000023838	1,07E+10	11512,7741	1,48E+10	25182,13
	N	6	6	6	6	6	6	6	6	6
	Desviación estándar	385140,000	102,03871	,45592	,001838	,0000002832	4990126326	1645,21772	6340725382	11678,799
	Mínimo	549961	38,33	,51	,025	,00000203	5370075000	9764,47	7300875690	13845
	Máximo	1465253	303,55	1,73	,029	,00000276	16317919900	13979,42	22794886205	42491
	% de suma total	24,8%	17,7%	36,8%	32,8%	27,9%	32,2%	40,3%	22,1%	23,5%
3	Media	553005,86	146,1681	1,2336	,03103	,0000030646	5381777657	10240,4932	1,06E+10	17324,07
	N	7	7	7	7	7	7	7	7	7
	Desviación estándar	339316,311	71,40132	,46740	,002419	,0000003919	2970954182	1340,93715	7167462576	11198,129
	Mínimo	134849	72,54	,20	,028	,00000260	1508097700	8875,89	2800821408	3961
	Máximo	999657	235,10	1,60	,035	,00000362	9670430000	12715,43	23912018284	35007
	% de suma total	17,5%	30,9%	40,7%	43,8%	41,9%	18,8%	41,8%	18,6%	18,9%

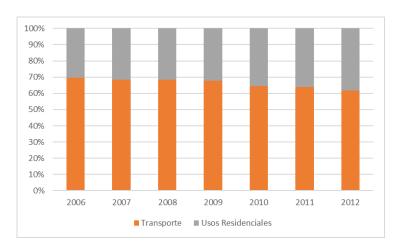
Valores más altos

Valores más bajos

Metabolismo energético: Totales

El 46 % del total de energía consumida (transporte + usos residenciales) se lo reparten entre los hogares de las regiones más pobladas: C. Madrid, Andalucía y Cataluña

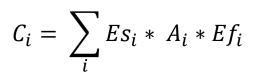
La tendencia general de los hogares regionales es la de aumentar su consumo energético hasta la mitad del período, y luego disminuir más o menos bruscamente


Metabolismo energético: Totales

Castilla y León

En los hogares de algunas CCAA(Castilla y León, Castilla-La Mancha, Galicia, Aragón) los Usos residenciales están a la par o superan ligeramente el peso del transporte

Andalucía



En el resto de hogares regionales, se impone el peso del transporte en el consumo energético de los hogares

TAREAS EN DESARROLLO

3. TAREAS EN DESARROLLO

1. Descomposición factorial (Usos Residenciales y Alimentación)

C_i = Consumo energético/material de los hogares en las CCAA (TJ ó kg)

Es_i = Factor estructural

 A_i = Factor actividad

Ef_i = Factor eficiencia

A partir de variables como:

Número de hogares (número, EPF)
Superficie útil hogares (m², EPF)
Tamaño de los hogares (personas, EPF)
Renta (total, per cápita, por hogar) (€, EPF)
Consumo energético hogares (total, per cápita, por hogar, por unidad de consumo) (TJ, GJ/cap, GJ/hogar, GJ/uc, EPF)
Consumo material alimentos hogares (total, per cápita, por hogar, por unidad de consumo)(kg, kg/cap, kg/hogar, kg/uc, EPF)

En construcción

2. Modelo con datos de panel para CCAA (panel rotatorio)

$$y_{it} = \alpha_{it} + x'_{it}\beta + u_{it}$$

y_{it} = vector de la variable dependiente

i = individuos (i = 1, 2,, n)

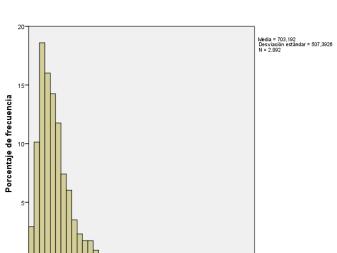
t = tiempo (t = 1, 2, ..., T)

 α_{it} = recoge la heterogeneidad provocada por los efectos de los individuos y/o tiempo provocada por variables no observables

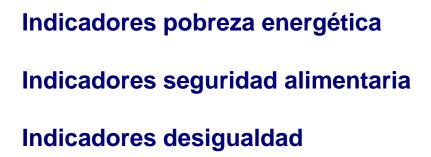
X'_{it} = vector que contiene k variables independientes

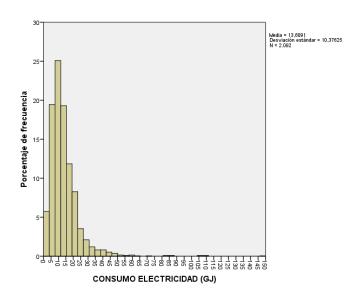
β = vector de k parámetros

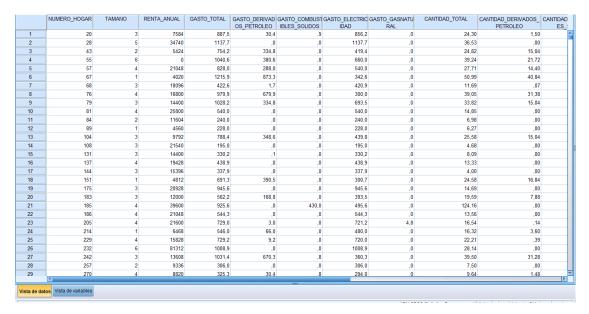
 u_{it} = residuos (deben ser normales)


4	A	В	С	D	E	F	G	н	1	J	K	
1	CCAA	Eficiencia_2006	Eficiencia_2007	Eficiencia_2008	Eficiencia_2009	Eficiencia_2010	Eficiencia_2011	Eficiencia_2012	Consumo_veh_2006	Consumo_veh_2007	Consumo_veh_2008	Consu
2	Andalucia	3,91E-06	3,85E-06	4,09E-06	3,84E-06	3,81E-06	3,77E-06	3,73E-06	0,039	0,037	0,038	3
3	Aragon	3,00E-06	2,99E-06	2,92E-06	2,93E-06	2,77E-06	2,42E-06	2,49E-06	0,036	0,037	0,037	7
4	Asturias	3,25E-06	3,21E-06	3,22E-06	3,17E-06	3,11E-06	3,00E-06	2,86E-06	0,039	0,037	0,035	5
5	Baleares	3,07E-06	3,16E-06	3,05E-06	2,81E-06	2,81E-06	2,51E-06	2,35E-06	0,032	0,034	0,032	2
6	Canarias	3,94E-06	3,91E-06	2,94E-06	4,44E-06	3,97E-06	4,20E-06	3,62E-06	0,050	0,046	0,041	L
7	Cantabria	2,90E-06	2,90E-06	2,62E-06	2,78E-06	2,62E-06	2,55E-06	2,60E-06	0,043	0,041	0,037	7
8	CyL	2,64E-06	2,38E-06	2,45E-06	2,41E-06	2,21E-06	2,23E-06	2,10E-06	0,038	0,035	0,035	5
9	CLM	2,02E-06	1,97E-06	2,03E-06	2,12E-06	1,85E-06	1,99E-06	2,03E-06	0,035	0,034	0,031	L
10	Cataluña	3,55E-06	3,61E-06	3,68E-06	3,46E-06	3,22E-06	3,09E-06	3,14E-06	0,036	0,036	0,035	5
11	C_Valenciana	3,90E-06	3,54E-06	3,55E-06	3,79E-06	3,76E-06	3,32E-06	3,58E-06	0,037	0,034	0,032	2
12	Extremadura	3,26E-06	3,24E-06	3,28E-06	3,35E-06	2,86E-06	2,86E-06	2,58E-06	0,034	0,034	0,035	5
13	Galicia	2,86E-06	2,95E-06	3,12E-06	2,86E-06	2,58E-06	2,66E-06	2,76E-06	0,033	0,034	0,035	ó
14	C_Madrid	5,25E-06	5,66E-06	5,44E-06	5,23E-06	5,64E-06	5,12E-06	4,99E-06	0,034	0,035	0,032	2
15	R_Murcia	3,53E-06	3,97E-06	4,00E-06	4,05E-06	3,66E-06	3,82E-06	3,42E-06	0,037	0,040	0,037	7
16	Navarra	3,66E-06	3,46E-06	3,12E-06	2,92E-06	2,72E-06	3,12E-06	3,07E-06	0,044	0,041	0,038	3
17	País Vasco	3,88E-06	3,54E-06	3,66E-06	3,42E-06	3,43E-06	3,20E-06	3,25E-06	0,040	0,036	0,037	7
18	Rioja	3,07E-06	3,19E-06	2,60E-06	2,60E-06	2,83E-06	2,81E-06	2,63E-06	0,040	0,042	0,035	5
19												
20												

Software: Stata


Formato datos: wide Pruebas preliminares


3. TAREAS EN DESARROLLO


3. Explotación muestra microdatos a nivel regional

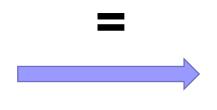
GASTO TOTAL (Euros)

En construcción

3. TAREAS EN DESARROLLO

4. Flujos indirectos: Análisis del Ciclo de Vida (ACV)

En construcción


Programa de ACV

Bases de datos de ACV con información homogénea y verificada según la ISO 14040 e 14044

Literatura científica sobre ACV

- 5. Estudio general de los flujos de agua (insumo) y residuos (output)
- 6. Comparación resultados: Medición híbrida vs. Medición directa

GRACIAS POR SU ATENCIÓN