Límites ecológicos y metabolismo urbano: un análisis económico-ecológico de las ciudades

Óscar Carpintero
IUU-GEEDS, Universidad de Valladolid
Seminario: "Áreas urbanas y escasez de recursos"
ETSA, 7 de junio de 2017, Madrid.

Guión

- 1. Objetivos y medios del sistema económico
- 2. Contexto de economía de la adquisición: Restricciones y límites
- 3. El metabolismo urbano y el papel económico-ecológico de las ciudades (especial referencia a alimentación)
- 4. Conclusiones

Objetivos y medios del sistema económico


OBJETIVOS

- Satisfacción necesidades de la población (producción de bienes)
- Maximización de beneficios (producción de mercancías)

MEDIOS

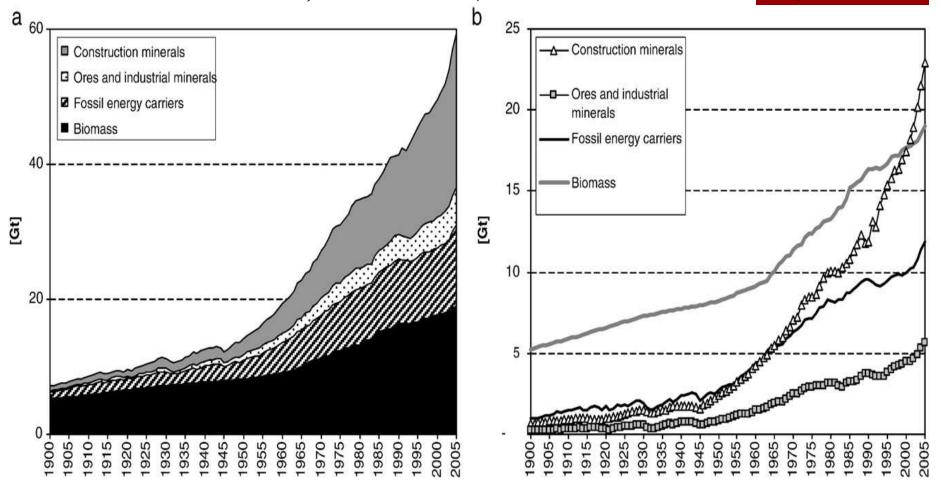
- Crecimiento: aumento de bienes y servicios
 - Costes ambientales y límites ecológicos, evitar discutir sobre reparto.
- Redistribución de renta y riqueza existentes y de los costes sociales y ambientales (Criterios, ética)

Tres preguntas económicas básicas

■ ¿Qué producir?

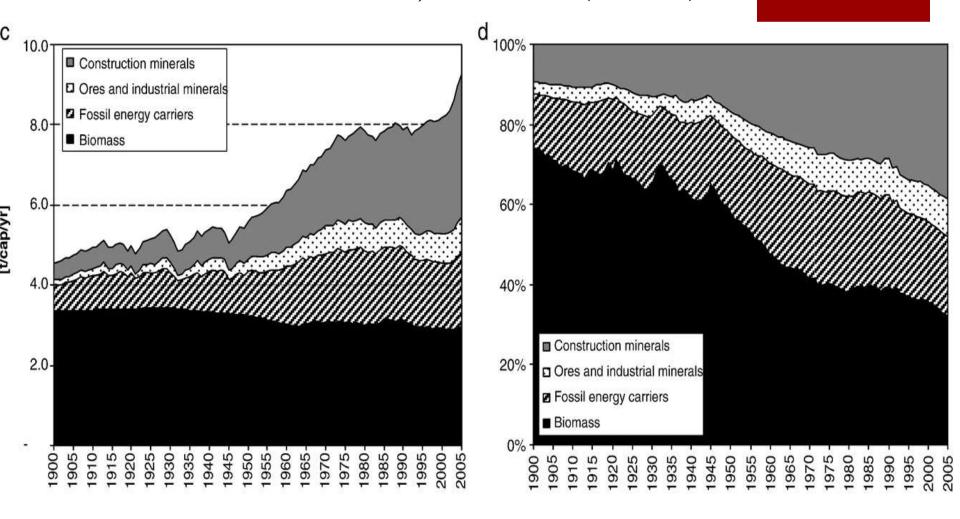
■ ¿Cómo producir?

■ ¿Para quién producir?


 Todas afectan al SISTEMA DE PRODUCCIÓN y estrechamente relacionadas con la sostenibilidad del sistema económico

Mutación económica fundamental del siglo XX

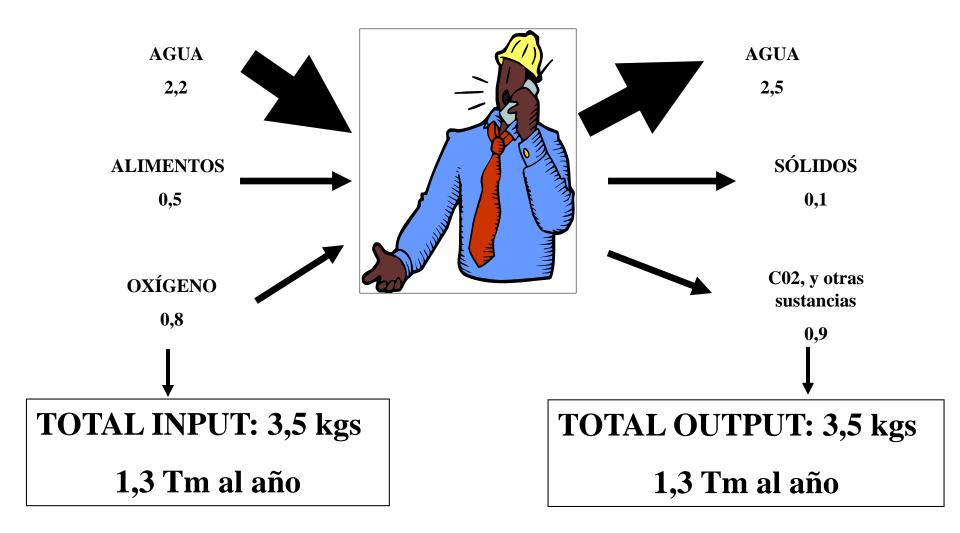
- ECONOMÍA DE LA PRODUCCIÓN
 - Renovable y autocentrada


- ECONOMÍA DE LA ADQUISICIÓN
 - No renovable
 - Con cargo al resto del mundo
 - Hace insostenible actividades que eran sostenibles (agricultura, ganadería...)

Evolución de la extracción de recursos naturales a escala mundial, 1900-2005 (miles de millones de tm)

<u>Fuente</u>: Krausmann, Fridolin, Simone Gingrich, Nina Eisenmenger, Karl-Heinz Erb, Helmut Haberl, Marina Fischer-Kowalski, (2009): "Growth in global materials use, GDP and population during the 20th century", *Ecological Economics*, 68, pp. 2696-2705.

Evolución de la extracción de recursos naturales a escala mundial, 1900-2005 (tm/hab)



<u>Fuente</u>: Krausmann, Fridolin, Simone Gingrich, Nina Eisenmenger, Karl-Heinz Erb, Helmut Haberl, Marina Fischer-Kowalski, (2009): "Growth in global materials use, GDP and population during the 20th century", *Ecological Economics*, 68, pp. 2696-2705.

Economía ecológica y metabolismo económico

- La economía en términos biofísicos
- Concepto de metabolismo socioeconómico
 - Metabolismo endosomático
 - Metabolismo *exosomático*

Metabolismo humano *endosomático* (Kilogramos por habitante y día)

Satisfacer las necesidades biológicas supone apenas el 3 por 100 del tonelaje movilizado por la economía española

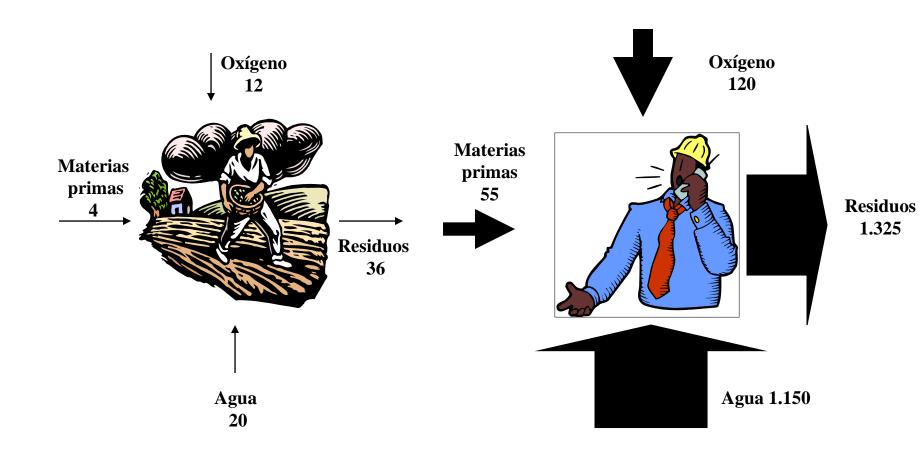
METABOLISMO HUMANO

(53 millones de tm/año)

(1,3 tm/habitante/año)

CON agua

METABOLISMO ECONÓMICO


(1.500 millones de tm/año)

(37 tm/ha/año)

SIN agua

<u>Fuente</u>: Carpintero, O. (2005): *El metabolismo de la economía española: Recursos naturales y huella ecológica (1955-2000*), Fundación César Manrique.

Comparación del metabolismo económico de la sociedad agrícola tradicional y de la sociedad industrial (Kilogramos por habitante y día)

Doble limitación a la expansión de la actual civilización industrial

- Recursos
 - Pico del petróleo
 - Pico de los minerales
- Residuos
 - Cambio climático

Table 1: Percent of Current Reserves that Must Be Left Unused to Meet 2 Degree Target

Region	Coal Reserves	Natural Gas Reserves	Oil Reserves
World	82%	49%	33%
United States	92%	4%	6%
Canada	75%	24%	74%
Middle East	99%	61%	38%
China and India	66%	63%	25%
Africa	85%	33%	21%
Central & South America	51%	33%	39%

Source: McGlade and Ekins, 2015.

Pico de los minerales

Mineral	Peak year	URR (tons)	URR (tons) from USGS:
	(logistic)	from logistic fitting	reserves + cumulative
			production up to 2006
Mercury	1962	$(5.8 \pm 0.4) \cdot 10^5$	5.9·10 ⁵
Tellurium	1984	$(1.0 \pm 0.4) \cdot 10^4$	2.8·10 ⁴
Lead	1986	$(3.3 \pm 0.2) \cdot 10^8$	2.9·10 ⁸
Cadmium	1989	$(1.33 \pm 0.09) \cdot 10^6$	1.5·10 ⁶
Potash	1989	$(1.54 \pm 0.09) \cdot 10^9$	9.5·10 ⁹
Phosphate rock	1989	$(8.1 \pm 0.4) \cdot 10^9$	2.4·10 ¹⁰
Thallium	1995	$(4.7 \pm 0.3) \cdot 10^2$	7.6·10 ²
Selenium	1994	$(1.1 \pm 0.14) \cdot 10^5$	1.6·10 ⁵
Zirconium			
minerals	1994	$(3.9 \pm 0.25) \cdot 10^7$	6.7·10 ⁷
concentrates			
Rhenium	1998	$(1.0 \pm 0.3) \cdot 10^3$	3.3·10³
Gallium	2002	$(2.5 \pm 0.5) \cdot 10^3$	1.65·10 ⁴ (?)

Fuente: Bardi, U., M. Pagani, (2007): "Peak materials", The Oil Drum.

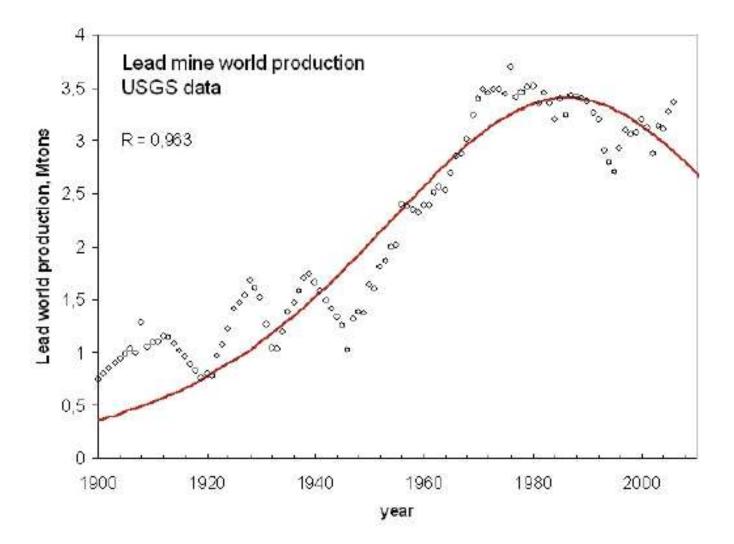


Figure 10. Peaking of lead³²

Fuente: Bardi, U., M. Pagani, (2007): "Peak materials", The Oil Drum.

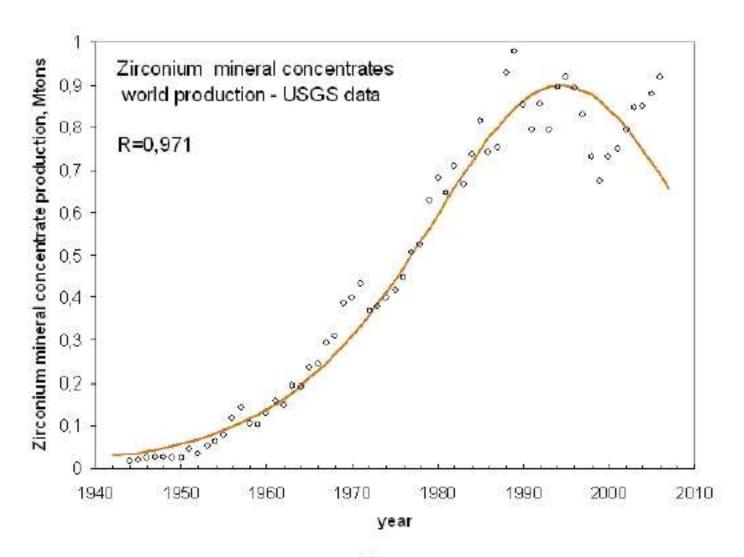


Figure 11. Peaking of zirconium³³

Fuente: Bardi, U., M. Pagani, (2007): "Peak materials", The Oil Drum.

Escasez geológica y metales críticos: el caso de la UE

Factores de "criticidad"

- 1. Escasez geológica
- 2. Alto crecimiento del consumo
- 3. Importancia económica de los metales
- 4. Concentración de reservas en pocos países
- 5. Restricciones a exportaciones
- 6. Bajo nivel de reciclado

List of critical raw materials at EU level (in alphabetical order):

Antimony	Indium	
Beryllium	Magnesium	
Cobalt	Niobium	
Fluorspar	PGMs (Platinum Group Metals) ¹	
Gallium	Rare earths ²	
Germanium	Tantalum	
Graphite	Tungsten	

Fuente: Europan Commission, (2010): *Critical raw materials for the EU*. (http://ec.europa.eu/enterprise/policies/rawmaterials/documents/index_en.htm).

Raw material	Emerging technologies (selected)	
Antimony	ATO, micro capacitors	
Cobalt	Lithium-ion batteries, synthetic fuels	
Gallium	Thin layer photovoltaics, IC, WLED	
Germanium	Fibre optic cable, IR optical technologies	
Indium	Displays, thin layer photovoltaics	
Platinum (PGM)	Fuel cells, catalysts	
Palladium (PGM)	Catalysts, seawater desalination	
Niobium	Micro capacitors, ferroalloys	
Neodymium (rare earth)	Permanent magnets, laser technology	
Tantalum	Micro capacitors, medical technology	

Fuente: Europan Commission, (2010): *Critical raw materials for the EU*. (http://ec.europa.eu/enterprise/policies/rawmaterials/documents/index_en.htm).

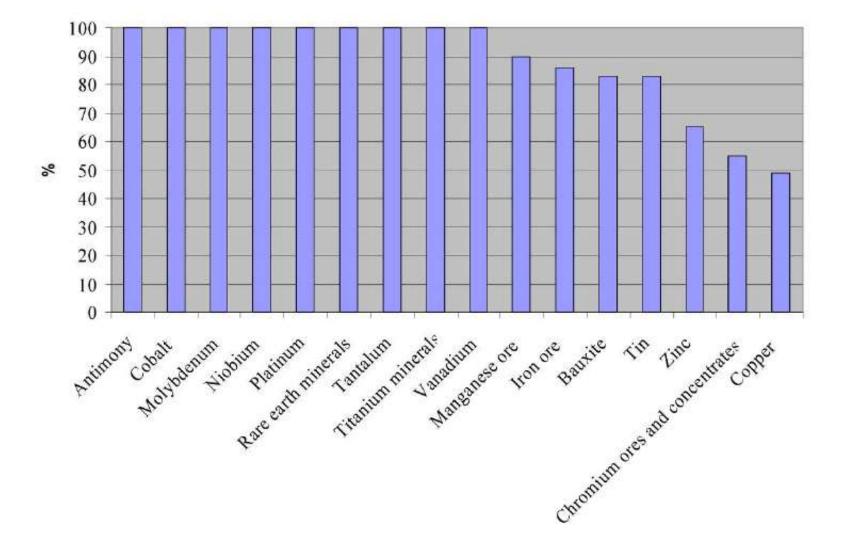
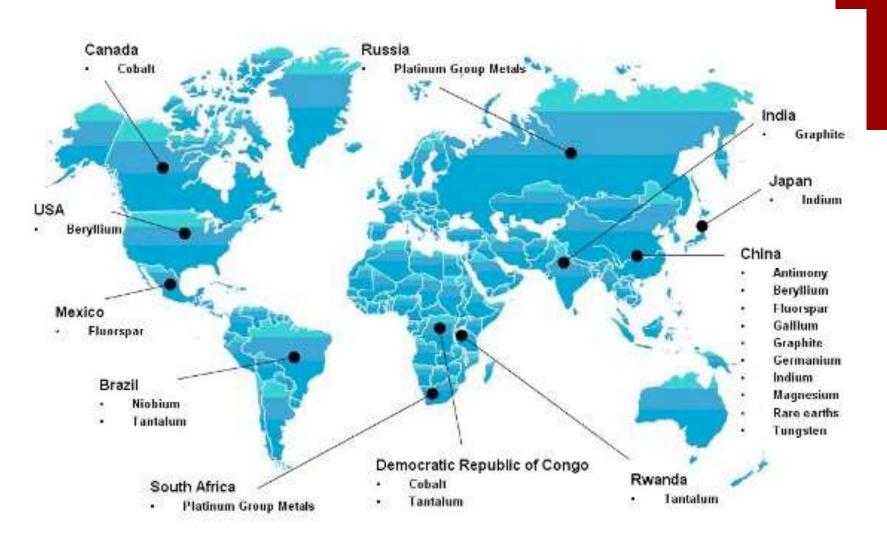



Figure 19 Metal concentrates and ores net imports of EU27 as fraction of apparent consumption in 2008⁶⁹

Fuente: Materials Innovation Institute (2009): Materials scarcity. Netherlands.

Dependencia de UE

Fuente: Euroepan Commission, (2010): *Critical raw materials for the EU*. (http://ec.europa.eu/enterprise/policies/rawmaterials/documents/index_en.htm).

Table 6. Selected "high-tech materials" applications for innovative "environmental technologies" 51

Problem	Solutions	Raw materials (application)
Future energy supply	Fuel cells	Platinum
		Palladium
		Rare earth metals
		Cobalt
	Hybrid cars	Samarium (permanent magnets)
		Neodymium (high performance magnets)
		Silver (advanced electromotor generator)
		Platinum group metals (catalysts)
	Alternative energies	Silicon (solar cells)
		Gallium (solar cells)
		Silver (solar cells, energy collection / transmission, high performance mirrors)
		Gold (high performance mirrors)
	Energy storage	Lithium (rechargeable batteries)
		Zinc (rechargeable batteries)
		Tantalum (rechargeable batteries)
		Cobalt (rechargeable batteries)
Energy conservation	Advanced cooling technologies	Rare earth metals
	New illuminants	Rare earth metals (LED, LCD, OLED)
		Indium (LED, LCD, OLED)
		Gallium (LED, LCD, OLED)
	Energy saving tyres	Industrial minerals
	Super alloys (high efficiency jet engines)	Rhenium
Environmental protection	Emissions prevention	Platinum group metals
	Emissions purification	Silver
		Rare earth metals
High precision machines	Nanotechnology	Silver
		Rare earth metals
IT limitations	Miniaturisation	Tantalum (MicroLab solutions)
		Ruthenium (MicroLab solutions)
	New IT solutions	Indium (processors)
		Tungsten (high performance steel hardware)
	RFID	Indium
	(hand-held consumer electronics)	Rare earth metals
	ì	Silver

Fuente: Materials Innovation Institute (2009): Materials scarcity. Netherlands.

¿Qué papel juegan las ciudades en la configuración del metabolismo económico en un contexto de límites?

Metabolismo urbano

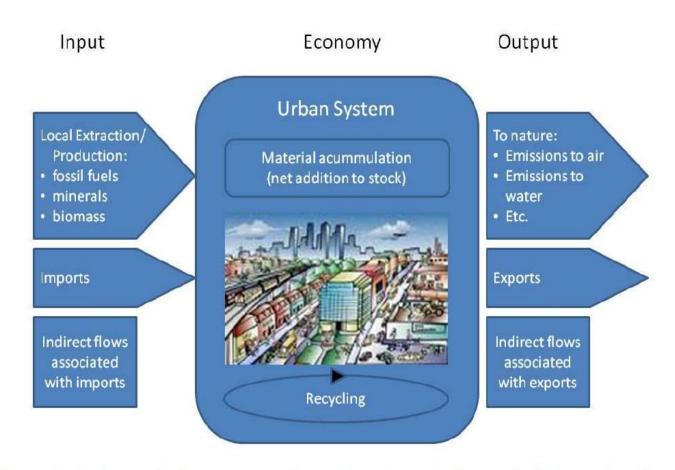


Figure 3 - Basic metabolism concept: Categories of metabolic metabolic in- and outflows

Fuente: Minx, et al., (2011: 8).

Metabolismo urbano

- Ciudades principal asentamiento: 50 por 100 población mundial.
- 60-80 por 100 del consumo energético mundial.
- 75 por 100 de las emisiones de CO2.
- 75 por 100 de los recursos naturales mundiales.
- 80 por 100 del PIB mundial.
- 2 por 100 de la superficie terrestre.
- Energía, materiales, agua y residuos sobre el territorio: acumulación jerárquica de poder, de decisión y de riqueza.

¿Qué enseñanzas obtenemos del estudio del metabolismo urbano? Algunos ejemplos

- Obra pionera de Wolman (1965) para Estados Unidos
- Algunos ejemplos posteriores :
 - Bruselas (1977), Hong-Kong, (1978), Barcelona (1985), Madrid (1987),
 Londres (2002), Viena, Hamburgo y Leipzig (2006), Paris (2007), Lisboa (2009), etc.
 - Importantes avances institucionales y de investigación en los últimos 3-5 años: UNEP (2013), Proyecto SUME (Unión Europea) con horizonte 2050
- Seguimiento de agua, energía, materiales, alimentos (nutrientes) y residuos
- Enseñanzas:
 - Las ciudades modernas son asentamientos humanos básicamente insostenibles ambientalmente.
 - Actúan como "parásitos" del resto del territorio: zonas de extracción y vertido.
 - La ordenación del territorio estrechamente ligada al tamaño del metabolismo urbano (insostenibilidad).
 - La población es un dato relevante pero no único: los patrones de consumo, estilos de vida y de movilidad importan mucho.

Determinantes del metabolismo urbano

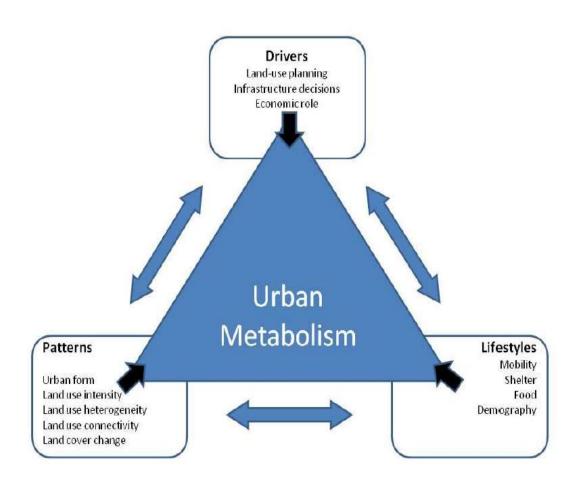
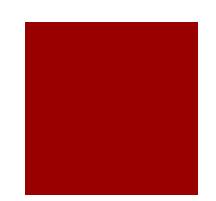
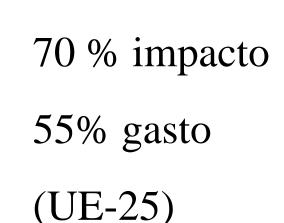



Figure 5 - Urban drivers, urban patterns & urban lifestyles as determinants of urban metabolism

Fuente: Minx, et al., (2011: 8).


Grueso del impacto del consumo en hogares: tres actividades

■Transporte

■ Vivienda

Fuente: A. Tukker y B. Jansen, (2006): "Environmental Impacts of Product: A Detailed Review of Studies", *Journal of Industrial Ecology*, 10, (3), pp. 159-182.

Un caso importante: las megaciudades

- Metabolismo de 27 megaciudaes (+ 10 millones en 2010).
- En 1970 sólo eran 8 megaciudades.

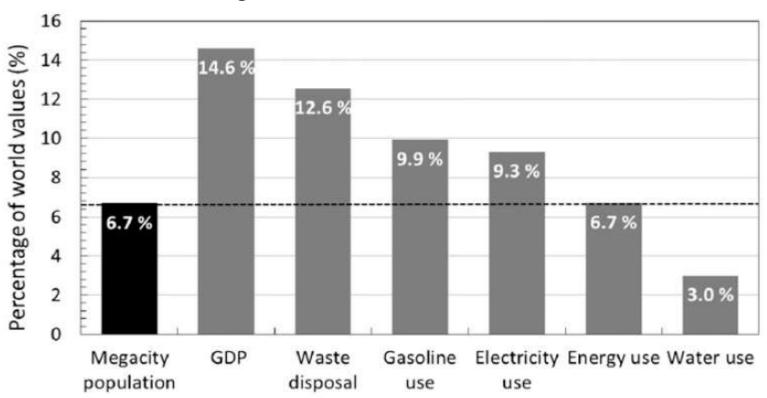


Fig. 2. Megacity resource and waste flows as a percentage of world values.

Fuente: Kennedy, Ch. A., et al, (2015): "Energy and material flows of megacities", *PNAS*, 112 (19), pp. 5985-5990.

Crecimientos en los consumos de recursos muy superiores al crecimiento demográfico

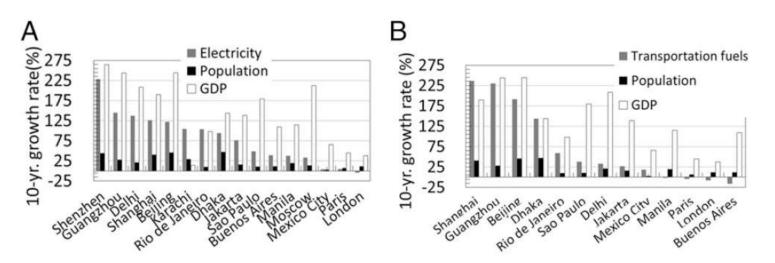
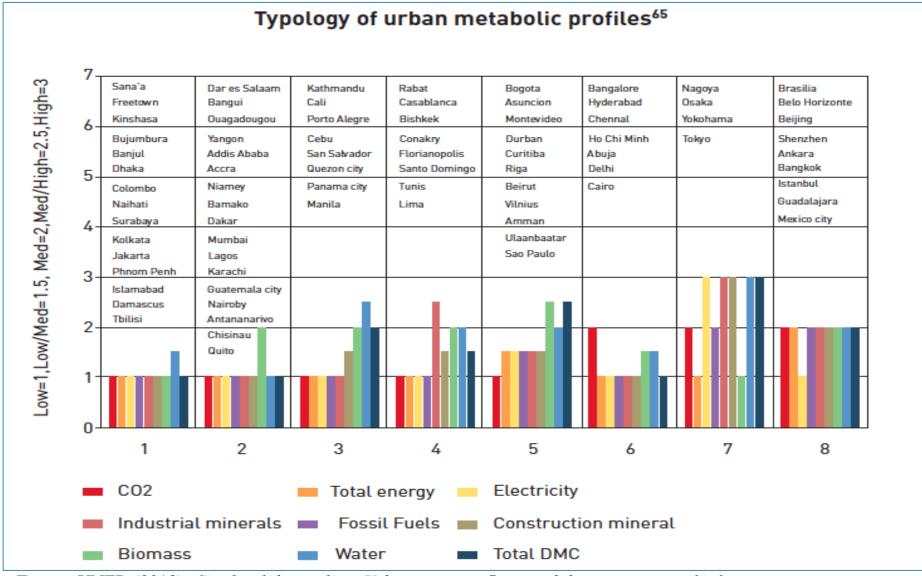
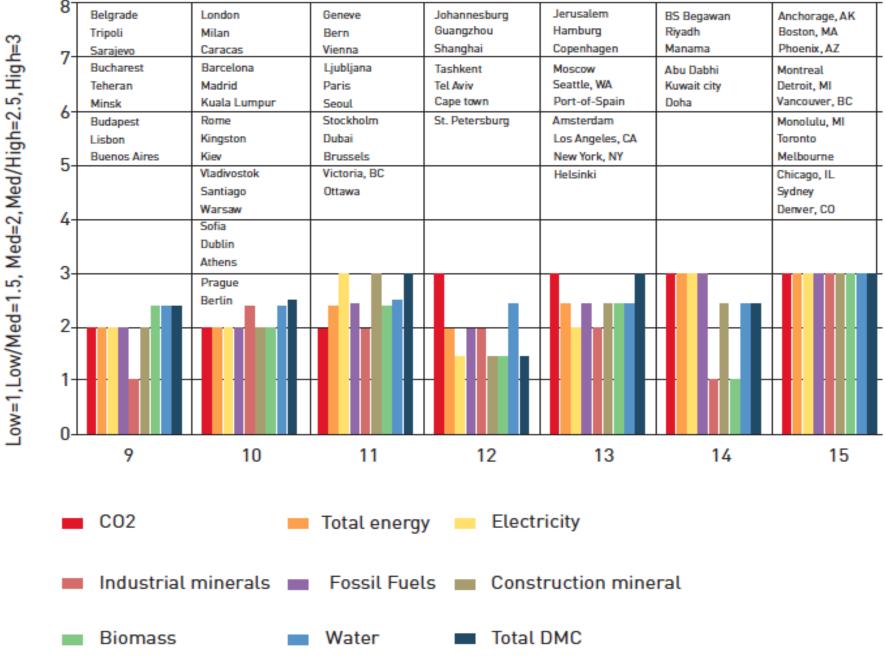
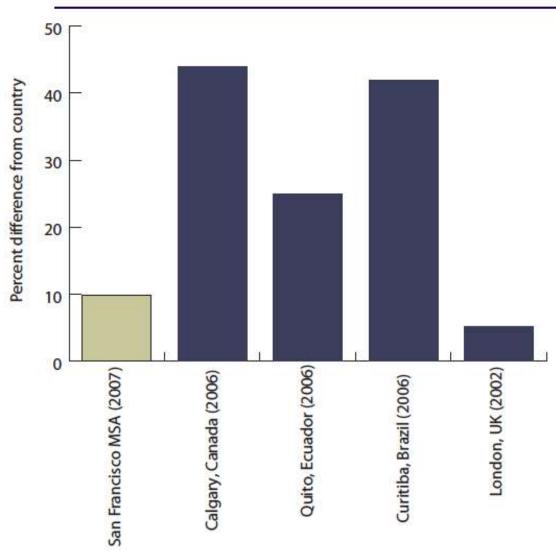



Fig. 4. Growth rates for electricity consumption (excluding line losses) (A) and ground transportation fuels (B), 2001–2011.


Fuente: Kennedy, Ch. A., et al, (2015): "Energy and material flows of megacities", *PNAS*, 112 (19), pp. 5985-5990.

De las megaciudades a una muestra representativa: 155 ciudades (UNEP, 2013).



Fuente: UNEP, (2013): City-level decoupling. Urban resource flows and the governance of infrastructure transitions. UNEP/IRP.

Fuente: UNEP, (2013): City-level decoupling. Urban resource flows and the governance of infrastructure transitions. UNEP/IRP.

Figure 2. The Ecological Footprint of various cities in relation to the country they are located in. Analyses may be performed using different methods.

Fuente: Global Footprint Network (2011): Ecological Footprint Analysis.

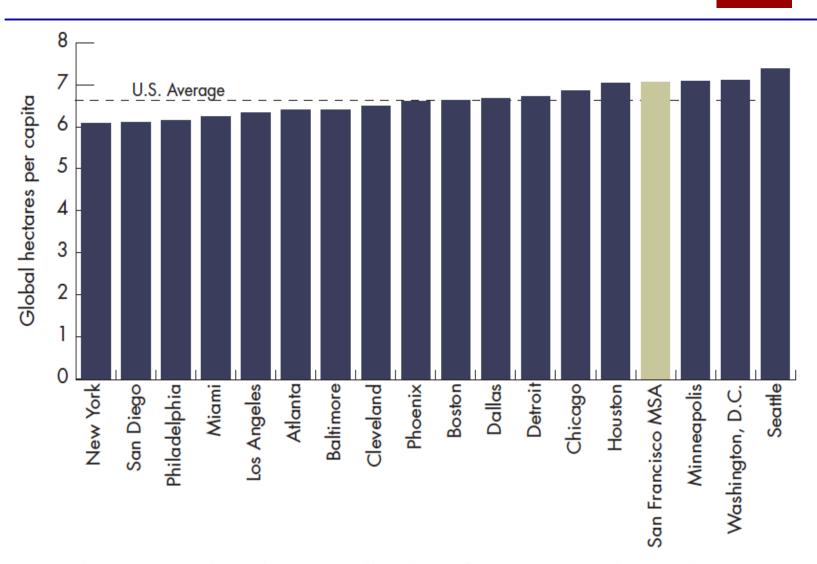
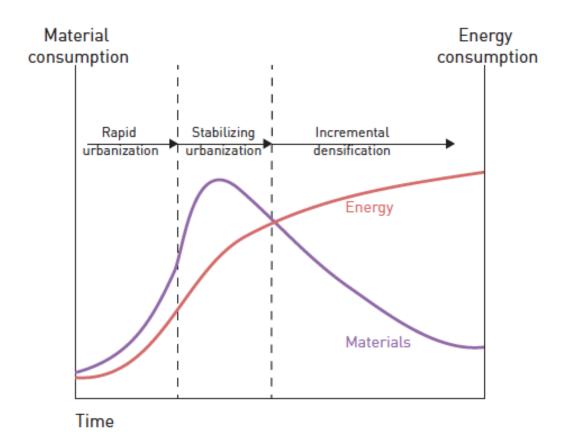
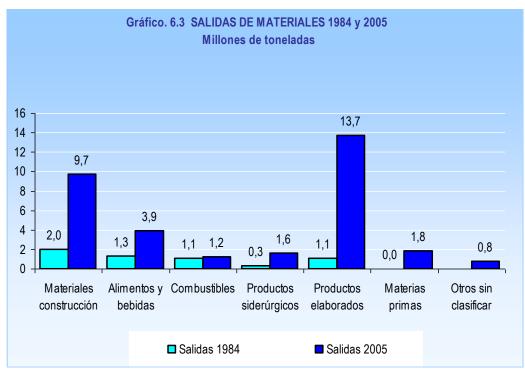



Figure 4. The average Ecological Footprint of residents of various cities in the United States.

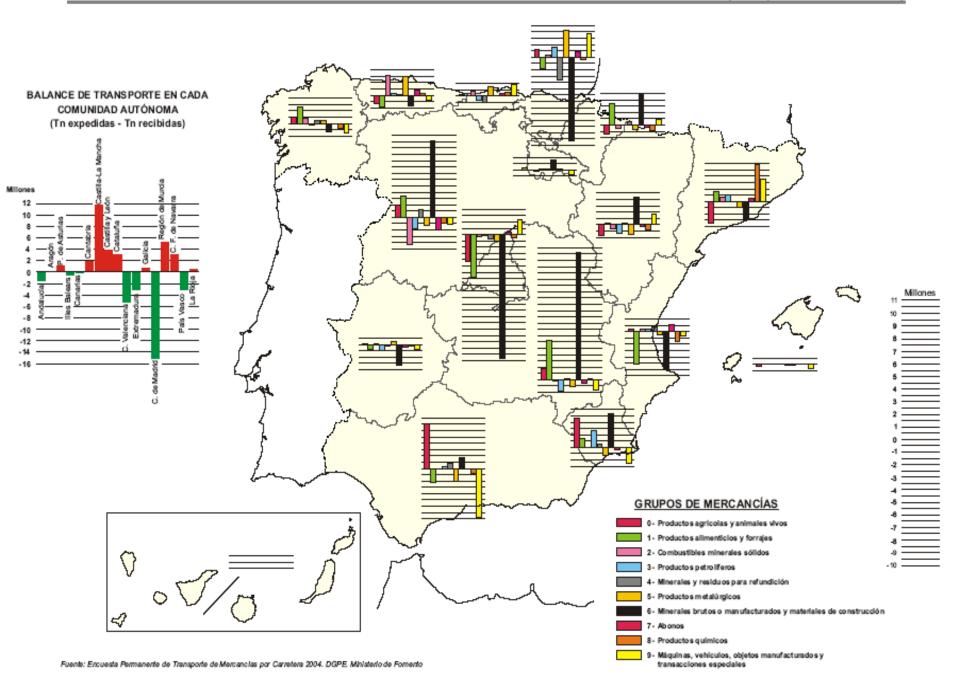
Fuente: Global Footprint Network (2011): Ecological Footprint Analysis.

Source: Fernandez 2007

Fuente: UNEP, (2013): City-level decoupling. Urban resource flows and the governance of infrastructure transitions. UNEP/IRP.


Diferentes flujos de recursos en las ciudades

- Agua
- Materiales
- Energía
- Alimentos y nutrientes


Materiales

- Evolución preocupante desde los 70s
- Ciudades crecientemente intensivas en materiales no renovables
- Plásticos, metales y minerales diversos (300-400 por 100 de incremento)
- Población entre un 75 y 100 por 100.
- Importancia de los materiales de construcción: mayor recorrido

Fuente: Ministerio de Fomento, Encuesta de Transportes de Mercancías por Carretera

Table 4 Lisbon total material flows, 2004 (1,000 tonnes)

Material category	Input		Wastes output
	Consumption	Local productiona	and emissions
Biomass	2050	23	432 ^b
Agriculture	1,499	7	117
Forestry	54 0	16	300
Fishery	11	0	0
Fossil fuels	1,190	72	1,219°
Metallic minerals	434	34	14
Nonmetallic minerals	7,261	54	380
Construction	7,168	51	335 ^d
Industrial	85	3	34
Industrial and construction	8	0	11
Nonspecified	289	3	105
Total	11,223	187	2,149

Note: Bolded figures throughout the table are subtotals of the various flow categories.

Fuente: Niza, Rosado y Ferrao (2009).

^aLocal production is presented in this table to illustrate that its value was residual in Lisbon—only 1.7% of consumption.

^bIncludes wastewater solid fraction.

^cIncludes air emissions from fossil fuel combustion.

^dConstruction and demolition waste.

Table 7 Consumption per activity sector in Lisbon (1,000 tonnes)

	Sector		
Material category	Restaurants, hotels, and services	Housing	Industry and construction
Biomass	442	1,253	355
Agriculture	425	1,064	10
Forestry	15	179	346
Fishery	2	10	0
Fossil fuels	556	608	25
Metallic minerals	102	128	204
Nonmetallic minerals	9	102	7,149
Construction minerals	0	78	57
Industrial minerals	7	21	3
Construction and industrial minerals	2	3	7,090
Nonspecified	49	240	0
Total	1,158	2,331	7,734

Note: Bolded figures throughout the table are subtotals of the various flow categories.

Fuente: Niza, Rosado y Ferrao (2009).

Energía

- Importantes consumos directos e indirectos
- Influencia de factores climáticos en las intensidades de los hogares (matices)
- Explosión de movilidad y de consumo energético asociado
- Relación entre densidad y compactación con el consumo de combustible
- Emisiones gaseosas el principal residuo

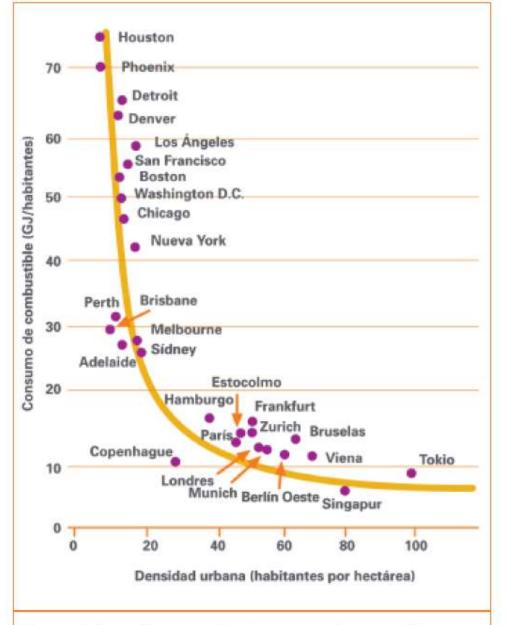
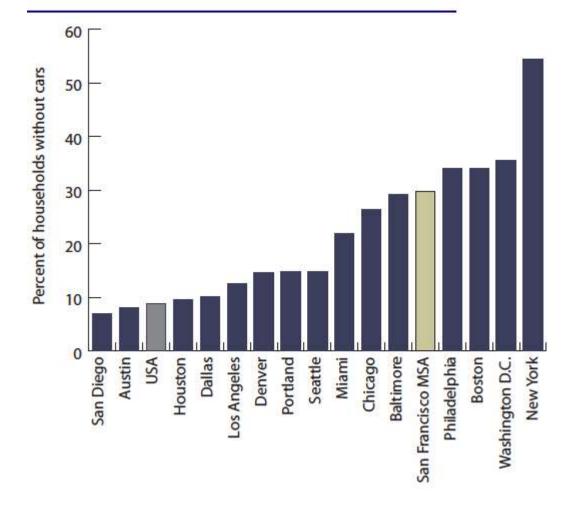
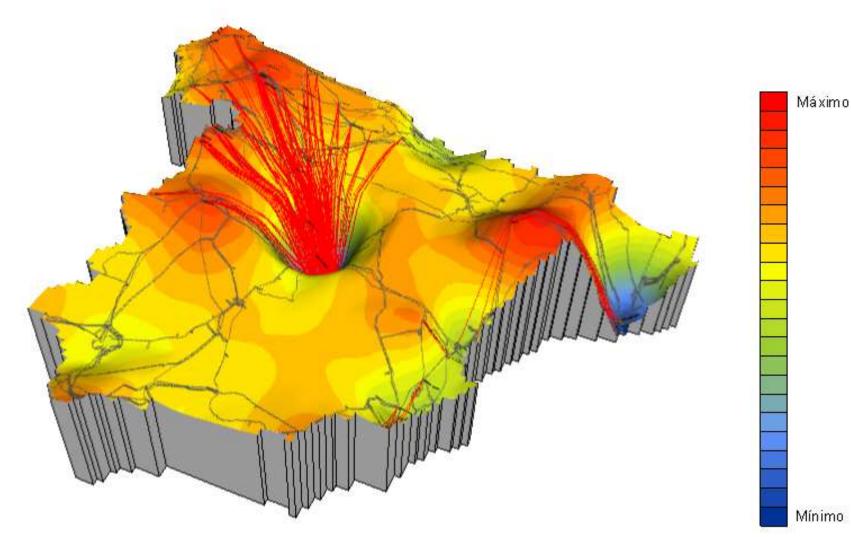



Figura 1.7. Reducción per capita del consumo de combustible con el incremento de la densidad urbana en diversas ciudades del mundo.

Fuente: N.B. Grimm, et al., Global Change and the Ecology of Cities, Science 319, 756 (2008)


Figure 3. The percent of households without private cars in various U.S. cities. Data from plaNYC Inventory of New York City Greenhouse Gas Emissions, September 2010.

Fuente: Global Footprint Network (2011): Ecological Footprint Analysis.

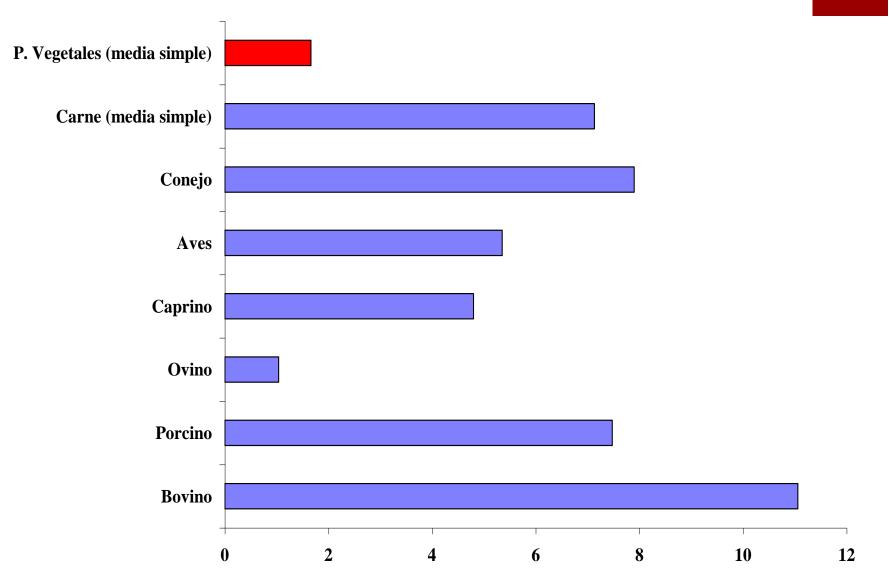
La energía que "no se ve"

Generación-Demanda de electricidad en MW

Fuente: Red Eléctrica Nacional

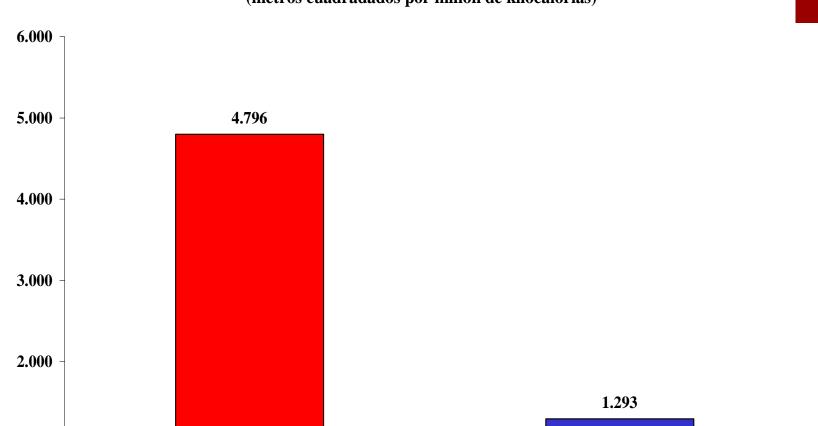
Nutrientes y alimentos

- Clave para ver si hay relación beneficiosa entre ciudad y entorno
- Alimentación: uno de los tres impactos ambientales básicos de los hogares (además de movilidad y vivienda)
- Dos tendencias:
 - Ciudades tradicionales con fuerte agricultura periurbana que casi se autoabastecen (14 de 15 grandes ciudades chinas)
 - Hong-Kong (15^a) y grueso de ciudades occidentales: 5 % de autoabastecimiento.
- Londres: 80 % de alimentos (5,6 millones tm) proceden del resto del mundo (fuera de UK)
- Dependencia de combustibles fósiles en producción y transporte (eficiencia alimentación USA: 7,3)


Nutrientes y alimentos

- ¿Cuáles son las exigencias energéticas, hídricas y territoriales, y cuales las emisiones de GEI asociadas al modelo alimentario? ¿Cuál es la huella?
- Algunas conclusiones:
 - Territorio: dieta vegetariana aprox. tres veces menos superficie cultivada que dieta rica en carne.
 - Dieta vegetariana eran aproximadamente 2.500 kcal/hab/día:
 - Obtener el 30 por 100 de esa energía a través del ganado →, eleva, directa e indirectamente ingesta hasta las 9.250 kcal/hab/día
 - Es decir, 3,7 veces más calorías de las que se obtienen con la cosecha mundial actual
 - Imposibilidad de generalizar una dieta rica en proteínas y grasas animales a todos los habitantes del planeta: importancia clave de la cuestión distributiva

Nutrientes y alimentos

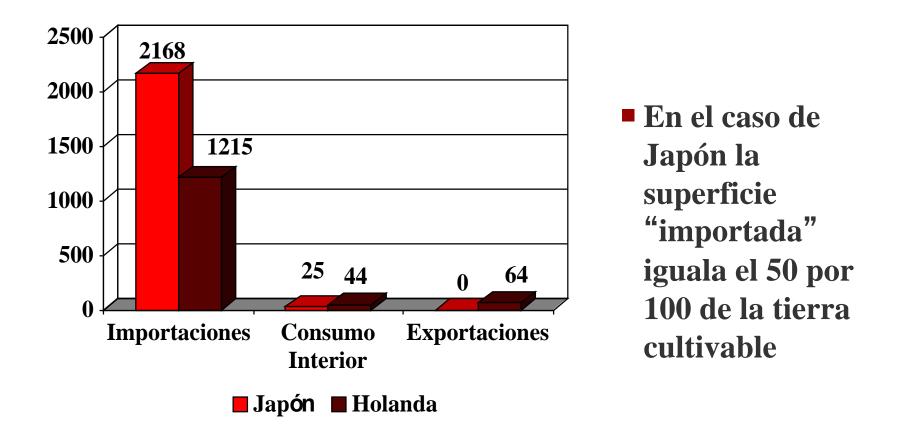

- La "huella animal" en el total de los países ricos donde alcanza valores en torno al 50-60 por 100 del total de huella alimentaria:
 - Dobla la media mundial del 35 por 100 y triplica la misma huella de los habitantes africanos y asiáticos.
- América del Norte: huella "animal" 7,4 veces mayor que los habitantes africanos o casi 5 veces respecto de los asiáticos, triplicando a su vez la media asignada a la población mundial.
- La importancia de los cambios alimentarios "pequeños".
 - "...en Holanda, una comida caliente incluye carne, patatas, arroz o pasta, y verduras. Un ligero aumento en el consumo de carne en sólo un bocado (10 gramos) por habitante y día incrementaría la tierra necesaria en 103 m2 por hogar y año (+3 por 100), mientras que el mismo aumento en el consumo de patatas produciría un incremento de sólo 2 m2 por hogar y año (+0,005 por 100)". Gerbens-Leenes, et al., (2002: 54).

REQUERIMIENTOS TERRITORIALES POR TIPO DE CARNE EN ESPAÑA, 2000 (metros cuadrados por kilogramo)

<u>Fuente</u>: Carpintero, O. (2005): *El metabolismo de la economía española: Recursos naturales y huella ecológica (1955-2000)*, Lanzarote, Fundación César Manrique.

IMPACTO ECOLÓGICO POR KILOCALORÍA INGERIDA EN ESPAÑA , 2000 (metros cuadradados por millón de kilocalorías)

<u>Fuente</u>: Carpintero, O. (2005): *El metabolismo de la economía española: Recursos naturales* y huella ecológica (1955-2000), Lanzarote, Fundación César Manrique.


VEGETALES

CARNE

1.000

0

Superficie de cultivo dedicada al consumo y comercio de carne de cerdo y de pollo (miles de hectáreas)

<u>Fuente</u>: James N. Galloway, et. al., (2009): "International Trade in Meat: The Tip of the Pork Chop", *Ambio*, 36, (8), pp. 625.

La huella de carbono...

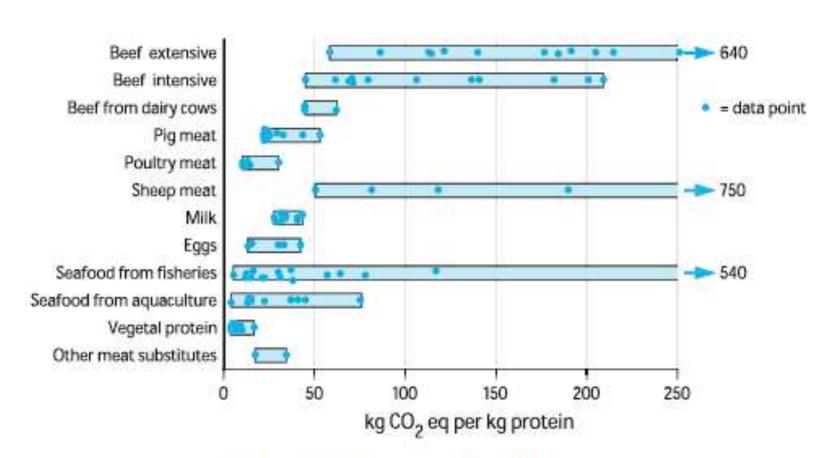
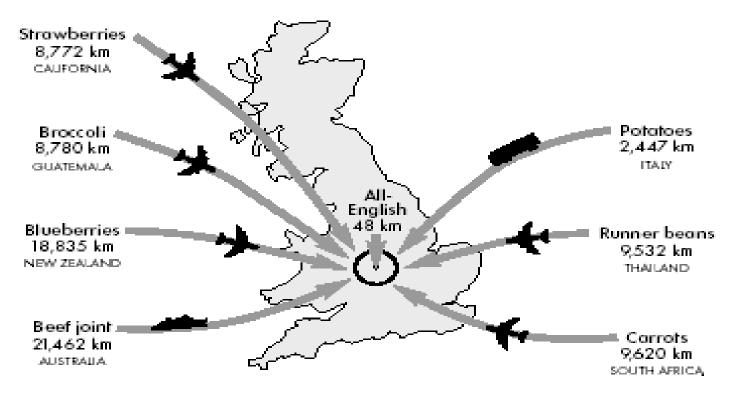
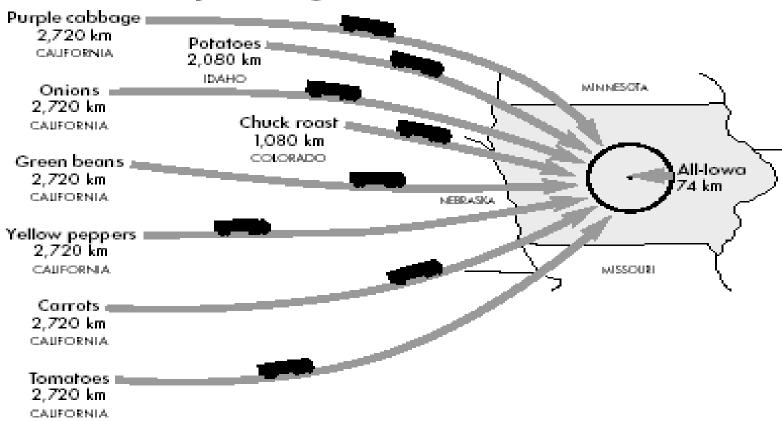



Fig. 1. Carbon footprints per kilogram of protein.

Fuente: Nijdam, d. Trudy Rood, Henk Westhoek, (2012): "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes", *Food Policy*, 37, 6, pp. 760-770.

医氏结肠 医电影 医

Local Versus Imported Ingredients: England


A "traditional" Sunday meal in England—beef, potatoes, carrots, broccoli, beans, blueberries, and strawberries—made from imported ingredients generates nearly 650 times the transport-related carbon emissions than the same meal made from locally grown ingredients (almost 38 kilograms of carbon dioxide compared with just 58 grams). All the ingredients are available in England for much of the year except the fruits, which can either be stored or preserved to extend their availability.

Source: See Endnote 11.

Fuente: Worldwatch Institute

1.66.J.B.1133/4

Local Versus Imported Ingredients: Iowa

The foods going into an "All-lowa" meal traveled an average of 74 kilometers to reach their destination, compared with 2,577 kilometers if they had been shipped from the usual distant sources nationwide. Researchers estimated that local and regionally sourced meals entailed 4 to 17 times less petroleum consumption and 5 to 17 times less carbon dioxide emissions than a meal bought from the conventional food chain.

Source: See Endnote 11.

Fuente: Worldwatch Institute

La diferencia urbano-rural en impacto ambiental emisiones se difumina

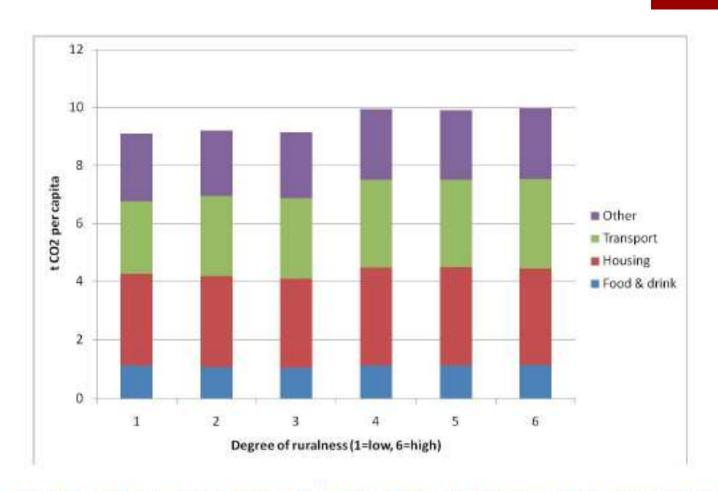
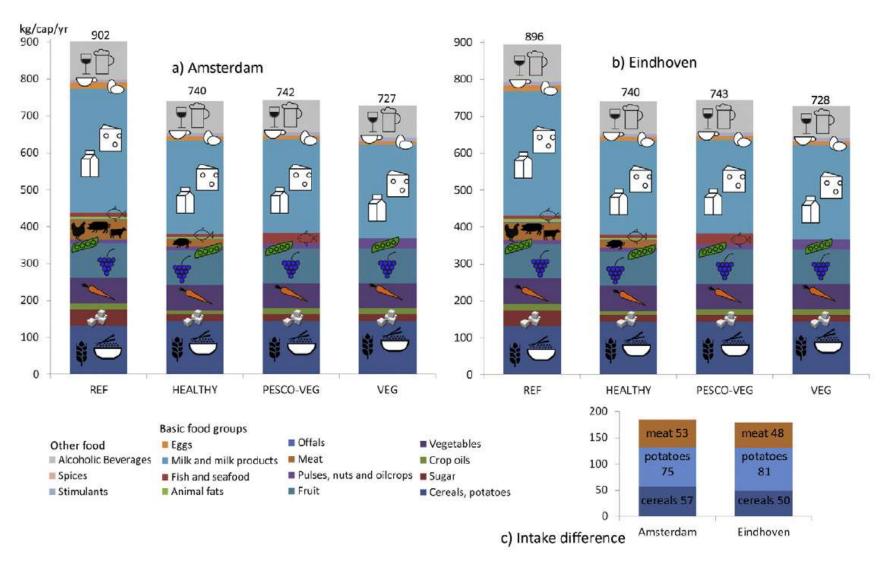
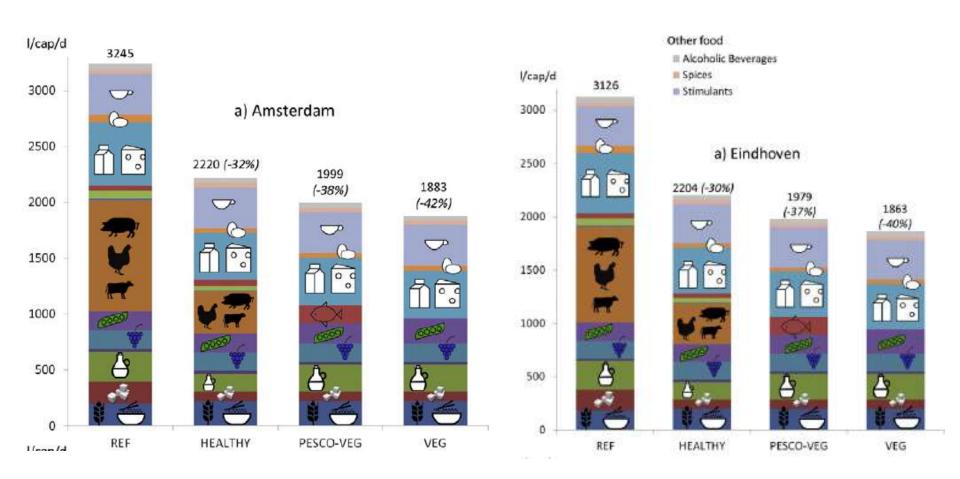
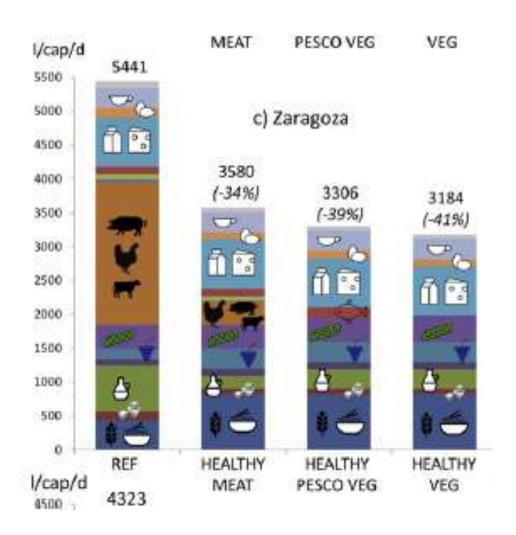



Figure 15 - Per capita carbon footprint by degree of ruralness. A value of 1 represents highly urbanised areas, while a value of 6 represent highly rural areas.


Fuente: Minx, et al., (2011).

La huella hídrica...


Fuente: Vanham, T.N. Nak y B.M. Gawlik, (2016): "Urban food consumption and associated water resources: the example of Dutch cities", *Science of The Total Environment*, 565, pp. 232-239...

La huella hídrica...

Fuente: Vanham, T.N. Nak y B.M. Gawlik, (2016): "Urban food consumption and associated water resources: the example of Dutch cities", *Science of The Total Environment*, 565, pp. 232-239...

La huella hídrica...

Fuente: Vanham, D., S. del Pozo, A.G. Pekcan, L. Keinan-Boker, A. Trichopoulou, B.M. Gawlik, (2016): "Water consumption related to different diets in Mediterranean cities", *Science of The Total Environment*, 573, pp. 96-105.

13 Mediterranean cities:

Dubrovnik, Lyon, Athens, Jerusalem, Genua, Pisa, Bologna, Reggio Emilia, Ljubljana, Manresa, Zaragoza, Ankara, Istanbul

WF of food consumption, existing diet:

3277 to 5789 l/cap/d

- including meat -19 to -43%
- pesco-vegetarian -28 to -52%
- vegetarian -30 to -53%

Una propuesta para Valladolid

OBJETIVOS

- Estimación de los flujos principales de entrada y salida que componen el metabolismo agroalimentario de Valladolid, con especial atención los flujos de alimentos frescos (cantidad, caracterización y procedencia).
- Estimación de los **residuos alimentarios y pérdidas de la cadena alime**ntaria que se generan en la ciudad según tipología y cantidad.
- Estimación de la huella ecológica territorial, hídrica y de carbono de la dieta media de los habitantes de Valladolid.
- Caracterización e identificación cartográfica de los cambios en el uso del suelo y evolución de los ecosistemas agrarios urbanos y periurbanos del término municipal y el alfoz.
- Estimación del uso agroecológico potencial y real del término municipal y del alfoz, así como del índice de autoabastecimiento bajo diferentes escenarios
- Estimación de impacto económico de la extensión de la agroecología urbana y periurbana bajo diferentes escenarios.

Es que nos conviene... ¿Por quién se preocupa la PAC? El caso de las "vacas locas"

"Es necesario minimizar este problema de la Encefalopatía Espongiforme Bovina (EEB) practicando la desinformación. Es mejor decir que la gente tiende a exagerar (...). Hace falta tener una actitud fría para no provocar reacciones desfavorables en el mercado. No hay que hablar más de la EEB. Ese punto no debe figurar en el orden del día. Vamos a pedir al Reino Unido que no publique más los resultados de sus investigaciones."

Comité Veterinario Permanente de la UE, Nota sucinta del 'dossier' sobre EEB, reunión del 9 y 10 de octubre de 1990.

Muchas gracias